Supporting the Evolution of Software

Supporting the Evolution of Software

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
Rector Magnificus, prof.dr. M. Rem, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op donderdag 1 juli 1999 om 16.00 uur

door

Petrus Johannes Schoenmakers
geboren te Breda

Dit proefschrift is goedgekeurd door de promotoren:

prof.Dr.-Ing. J.A.G. Jess
prof.Dr. P. Marwedel

Copromotor:
dr.ir. C.A.J. van Eijk

Copyright ©) 1999 Pieter J. Schoenmakers.

Printed by the Universiteitsdrukkerij Technische Universiteit Eindhoven from
camera-ready copy provided by the author, typeset by ITEX in Computer
Modern, and prepared using GNU Emacs on an Apple Macintosh PowerBook.

Cover photograph by Net <net@gerbil.org>.

Visit the TOM website at http://gerbil.org/tom.

CIP-pDATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN
Schoenmakers, Pieter J.

Supporting the evolution of software / by Pieter J. Schoenmakers. —
Eindhoven : Technische Universiteit Eindhoven, 1999.

Proefschrift. — ISBN 90-386-1620-1

NUGI 856

Trefw.: software ; hergebruik / object-georienteerde programmeertalen
/ object-georienteerd programmeren / debugging.

Subject headings: software reusability / object-oriented languages /
object-oriented programming / program testing.

Summary

[Zie voor een Nederlandse samenvatting bladzijde vii.]

Modern design methods are based on object-oriented analysis, which amounts
to the classification and specification of objects and their interaction. A sub-
sequent implementation in an object-oriented programming language encom-
passes the description of classes of objects. An important aspect of these
classes is their suitability for being reused, since something that is reused
does not need to be designed, implemented, and tested a second time.

Modern design systems and programming languages provide reuse mecha-
nisms like subclassing and wrapping. Unfortunately, using these mechanisms,
the choice of reusing a class is a binary one: the class is suitable for reuse
or not, in which case a new class must be designed instead. Even minor
imperfections and shortcomings imply a redesign instead of the desired reuse.

This dissertation discusses the validity of this observation and concludes
that the usual approach to solving this problem, which concentrates on the
development of classes, does not aid in solving the problem. The result of
such an approach remains reuse following a model of revolution: either all is
fine, or everything must be different.

The lion’s share of this dissertation discusses the design, implementation,
and use of the object-oriented programming language TOM. In TOM, to reuse
a class is not a binary choice: a class can be adjusted to make it suitable for
specific situations, even without availability of its source code. This way
TOM supports the evolution of classes that adapt to the circumstances of
reuse: either all is fine, or slightly different.

vi

Samenvatting

[See page v for a summary in English.]

Moderne ontwerpmethoden zijn gebaseerd op object-georiénteerde analyse,
wat neerkomt op de classificatie en specificatie van objecten en hun interactie.
Een implementatie in een object-georiénteerde programmeertaal behelst het
beschrijven van klassen van objecten. Een belangrijk aspect van deze klassen
is hun mogelijke geschiktheid voor hergebruik. Immers, wanneer iets wordt
hergebruikt hoeft het niet nogmaals ontworpen, geimplementeerd en getest te
worden.

Moderne ontwerpsystemen en programmeertalen bieden diverse mechanis-
men tot hergebruik zoals subclassen en wrappen. Echter, hierbij is de keuze
tot hergebruik van een klasse een binaire keuze: ofwel de klasse is geschikt
om hergebruikt te worden, ofwel zij is dat niet en een nieuwe klasse dient ont-
worpen te worden. Zelfs kleine onvolkomenheden en tekortkomingen leiden
aldus tot herontwerp in plaats van het beoogde hergebruik.

Dit proefschrift bespreekt de validiteit van deze observatie en concludeert
dat een aanpak van dit probleem op de gebruikelijke manier, geconcentreerd
op de ontwikkeling van klassen, niet helpt. Een dergelijke aanpak kan nog
steeds slechts hergebruik volgens het revolutiemodel herbergen: iets is goed,
of alles moet anders.

Het leeuwendeel van dit proefschrift behelst ontwerp, implementatie, ge-
bruik en evaluatie van de object-georiénteerde programmeertaal TOM. Herge-
bruik van een klasse is in TOM geen binaire keuze: aan een klasse kan van
alles bijgesteld worden om haar geschikt te maken voor een specifieke situatie;
hiervoor hoeft zelfs de broncode van de klasse niet beschikbaar te zijn. Op
deze manier ondersteunt TOM de evolutie van klassen, die zich aanpassen
aan de omgeving van hergebruik: iets is goed, of een klein beetje anders.

viii

Preface

A Very Important Aspect of a dissertation is its value to the reader. A difficult
aspect of writing a dissertation is ensuring it will be readable to many a reader
while adequately expressing the author’s intentions. A Very Important Aspect
of writing a dissertation is learning to appreciate the mechanisms of written
mass communication for a small public.

I am indebted to Koen van Eijk and Jochen Jess for their influential
proofreading of early manuscripts of this dissertation. Release early, release
often, the credo of the open source-software community, certainly applies to
projects for which the producer initially can not adequately value the product
and really needs the feedback, like this dissertation.

Of course I must also thank professor Jess for providing me with a nice
mission in a very nice group. Thanks to all group members, past and present,
for being this very nice group. Special thanks to Geert Janssen for allowing
me into the smoke shack and for showing how to be a Lecturer. Thanks to
Jos van Eijndhoven for adequate coaching. Also thanks to Raymond Nijssen
for being a challenging discussion partner before leaving for the Valley (and
for the apartment afterwards).

Ad ten Berg and Frans Theeuwen, now both at Philips Research’ ED&T,
deserve a special mention for allowing me to write them a tool in a language
they did not know. If one thing has resulted from that effort, it must be the
fixing of many bugs in the TOM compiler.

Thanks to Michael Brouwer for our early programming experiences—
which have strongly influenced the design of TOM—and for the implementa-
tion discussions while enjoying the Amsterdam night life.

Last but not least: many thanks to Net, for the fun and the future.

--Tiggr
Eindhoven, May 1999

Contents

Object orientation

1.1 Terminology o
1.2 Executionmodel
1.3 Compilation model Lo

Limits of object orientation

2.1 Reuse e e
2.2 Mechanisms e
2.3 Thereuse problem
2.4 OVerview e e e e e e e e

Flexibility of code

3.1 Ontheoriginofcode.
3.1.1 Theprogram
3.1.2 Libraries. L
3.1.3 Plug-ins oL
3.1.4 The operating system

3.2 Ataxonomy ofcode,

3.3 Source boundary

3.4 Language boundary

3.5 Flexibility paradigms oL
3.5.1 Type adaptation, .
3.5.2 Extension hierarchies.

3.6 Extensibility oo
3.6.1 Extensibility operations
3.6.2 Extensibility time o000,

3.7 Prior art in extensibility o000
371 CHH . e
3.72 Objective-C
3.73 Cecil

3.8 Résumé e

xii CONTENTS
4 TOM: Design 27
4.1 Objectives oL 27
4.1.1 Application domain 27
4.1.2 Target machine oL 28
413 Deploymento 28
414 Extensibility 0oL 30

4.2 Design philosophy oo 32
4.3 Language basics.o 33
43.1 Units 33
4.3.2 Basictypes oo 36
433 Tuples 39

44 Classesand objectso 40
441 Classes o i e 40
442 Objectstate. 42
4.4.3 Inheritance L. oL 44
444 Encapsulation. oo 47
445 Extensions oo 48
446 Classposing.« v o v v it 49

4.5 Methodso oL 51
4.5.1 Method definition 51
4.5.2 Method invocation 53
4.5.3 Method overloading 55
4.5.4 Messaging super 57

4.6 Miscellanea L. 58
4.6.1 Conditions 58
4.6.2 Thedidtype. 59

4.7 Run-time flexibility oo 61
4.7.1 Computed method invocation 62
4.7.2 Postponed method invocation 62
4.73 Forwardingo oL 64
4.74 Introspection 64

4.8 Compile-time features 65
4.8.1 Method-arguments default value 66
4.8.2 Method conditions 67

4.9 Missing features. Lo o 69
4.10 Résumé 70
5 TOM: Implementation 71
5.1 Source boundary 71
5.2 Extensibility oo 72
53 Compilero 73
5.3.1 Code annotations L. 73

5.3.2 Interfacingwith C 74

CONTENTS xiii

54 Run-time environment L 76
5.4.1 Method binding oL 76

5.4.2 State binding o oo 78

5.4.3 Libraryoptions 79

544 load methods, . 80

5.4.5 Garbage collection 81

5.4.6 Debugging supporto 81

5.5 Availability 82

6 Reflection 83
6.1 Conditional extensibility o000 83
6.1.1 Extensibility time 84

6.1.2 Extensibility scope o000, 84

6.1.3 Extensibilityrangeo, 85

6.2 Varying software versions 85
6.2.1 Software test versions 85

6.2.2 Regression testing 87

6.2.3 The economy of building test cases 87

6.2.4 The economy of building test versions 88

6.3 A testingexample 88
6.4 Unplanned testing 91
6.5 Hardware/software co-development 98
6.6 Hardware/software co-design 98
6.7 Applications 99
6.8 Vault. 102

7 Conclusions 105
7.1 Achievements 105
72 Futureworko 106
Glossary 107
Bibliography 113
Index 117

xiv

CONTENTS

Chapter 1

Object orientation

This dissertation concerns object-oriented programming. The object-oriented
programming paradigm employs a few simple concepts that can be combined
and applied in various ways, thus giving rise to intricate terminology that can
be confusing and overwhelming to the unsuspecting reader. To prevent termi-
nology from being a barrier to the successful understanding and appreciation
of this dissertation, this chapter provides a gentle introduction to the concepts
of object-oriented programming and the associated terminology. The reader
who is already familiar with the general terminology of object orientation and
object-oriented programming is encouraged to bravely skip this chapter.

The terminology of object-oriented programming as it is used in this disser-
tation is based on the terminology used in Objective-C, which itself is based
on that of Smalltalk and C. In those cases where Objective-C lacks similar
concepts, terminology is borrowed from Eiffel and plain old English.

For a thorough explanation of the object-oriented programming paradigm,
the reader is referred to books that, rather than focusing on a particular pro-
gramming language, discuss object-oriented programming in general, with a
particular object-oriented programming language in mind. Examples of fine
books are Object-oriented programming: an evolutionary approach, the origi-
nal Objective-C book by Brad Cox [10], Object-oriented programming and the
Objective- C language, the book by the company that gave the language more
widespread use [36], and Object-oriented software construction, by Bertrand
Meyer of Eiffel fame [29].

1.1 Terminology

To start with the basics: a computer is concerned with the manipulation of
data. Every piece of data has a type. A type defines a set of operations that
can be performed on data with that type.

2 CHAPTER 1. OBJECT ORIENTATION

When a type S is a subtype of a type T, the operations of S include at least
the operations of 7', i.e., the set of operations of S is a superset of the set of
operations of T. The subtype relation defines a partial order; it is reflexive,
transitive, and antisymmetric.

When S is a subtype of T, T is a supertype of S. A piece of data conforms
to the supertypes of its type. Any operation defined by one of the supertypes
can also be performed on that data.

A type defines an interface to data that conforms to the type: interaction
with such data is only possible through the operations that are offered by
that interface.

In object-oriented programming, a type is implemented by a class. Any
number of instances of the class can be created; each instance is a value of
the type that is implemented by its class. These instances are usually referred
to as objects.

In an object-oriented programming language, the types are implicitly de-
fined by the classes. Each class defines a corresponding type. A class can
inherit from another class, making the type defined by the inheriting class a
subtype of the type defined by the class from which it inherits. The inheriting
class is a subclass of the superclass.

A class has an implementation for each operation of its type. Such an
implementation is called a method. When a class inherits from a superclass,
it acquires not only a supertype but also the methods that implement the
operations of the supertype. As a consequence, a class does not need to
define methods for all operations that are defined by its supertypes.

A class can define additional methods, which adds operations to the type
that is defined by the class. A class can also define methods that implement
operations it inherits from a supertype. Such a method overrides the method
for the same operation that the class inherits from a superclass.

The data making up an instance consists of a number of instance variables.
The storage space needed for an instance variable is part of the storage needed
for the instance.

A class inherits from a superclass, in addition to the methods, also the
instance variables: the set of instance variables of a class is a superset of the
set of instance variables of a superclass. Only the methods of a class can
directly manipulate the instance variables: interaction with an instance can
only take place through the invocation of its methods. This encapsulation of
the instance variables is depicted in figure 1.1.

When the type of a variable is the type of a class, the value of the vari-
able is either the data of an instance, or it is a reference to an instance.
In the first case, the variable holds an instance of an ezpanded class; the
second case is the normal, non-expanded, case. The storage space required

1.1. TERMINOLOGY 3

Figure 1.1: Methods encapsulate an object’s data.

for a variable containing a reference to an instance does not vary with the
class of the instance being referenced. Most importantly, the variable can
reference any instance, of any size, as long as it conforms to the type of the
variable.

Instances of the same class are discernible by their identity and their state.
The state of an instance varies during its life time and two instances can
happen to have the same state. However, distinct instances of the same class
have, by definition, a different identity. The identity of an object does not
change during its life time. All aspects of an object other than its state and
identity, are defined by its class.

The distinction between the operations of a type and the methods of a class,
i.e., between interface and implementation, enables a level of abstraction.
When a variable references an object, performing an operation on the object
causes an invocation of the corresponding method. Which operations can
be invoked is determined by the type of the variable. Which method will
be invoked for a given operation is defined by the class of the object that is
referenced by the variable. This mechanism is called dynamic method binding.
On the other hand, when the method to be invoked is determined from the
type of the variable, the mechanism is called static method binding.

When a variable references an instance of a subclass conforming to the
variable’s type, dynamic method binding obeys the rules of a subclass being
able to override methods of a superclass. This is called polymorphism. Static
method binding disables polymorphism.

So far, this section has been concerned with objects as instances of a class.
In languages like Smalltalk and Objective-C, each class is represented by a
class object. The class object can be regarded as the sole instance of its meta
class. The existence of a class object enables otherwise impossible behaviour:
it can be referenced and messages can be sent to it. The archetypical use of
class objects is in creating new instances: the class object provides a class
method that returns a reference to a newly allocated object each time it is
invoked.

4 CHAPTER 1. OBJECT ORIENTATION

Sending messages

An often-used metaphor for the invocation of an operation or method of an
object is sending a message to that object, as depicted in figure 1.2. The ob-
ject is the receiver of the message. A message-send contains a selector, which
indicates the desired operation by name and the types of argument and re-
turn value (the subject, arguments, and return-type header fields in figure 1.2).
Furthermore, the message can have arguments—none in the example—and a
value can returned be in response, which will have a certain return-type. A
message-send is blocking, in that the sender of the message waits for the
answer, i.e., for the completion of the method.

To:joshua .~
Subject: age
Arguments: none
Return-Type: int

Figure 1.2: An invocation is like a message-send and waiting for an answer.

1.2 Execution model

This dissertation concerns code: source code in an object-oriented program-
ming language, created by a human and translated by a compiler into object
code, to be fed as instructions to a CPU. The body of the source code consists
of methods, and the body of each method is a sequence of statements. The
statements make up the executable content of the object code.

Method execution is sequential: when a method is invoked, its statements
are executed one at a time, one after the other. Statements are available
that influence the flow of control within a method to allow conditional and
repetitive execution of one or more statements.

Method invocations are blocking: execution of a calling method is sus-
pended while the called method is executing. As with every program, written
in any programming language, running on a CPU, a stack is present to ad-
minister suspended method invocations and to provide storage space needed
during the execution of a method, e.g., for local variables.

Execution of code needs a CPU, a stack, and an address space in which
all code and data of the running program resides. The number of CPUs and

1.3. COMPILATION MODEL 5

stacks can vary though each CPU needs a stack. When multiple CPUs are
available, the program can run multi threaded.

Execution of multiple threads is asynchronous: the processor instructions
of all running threads are executed independently. On a machine with N
processors, up to N threads of the same program can be running concurrently.

Though a programming language can explicitly support, use, or require
a multi-threaded environment, multi-threaded code can be written in any
programming language, even C.

1.3 Compilation model

The model of compilation used throughout this dissertation is very common
on contemporary computers and operating systems. It deserves a basic expla-
nation since understanding it helps distinguishing the objects from the object
code and, in turn, the object code from the object files.

Figure 1.3 depicts three stages of code: source code, object code, and ex-
ecutable code. Source code is contained in source files. In figure 1.3, a.c,
b.c, and d.c are source files containing source code written in C. Source files
are translated by a compiler, at compile time, into object files that contain
object code. In figure 1.3, the object files a.o0, b.o, and d.o are the result of
compiling the corresponding source files.

An object file contains symbol definitions, which are simple names like
_fac or elaborate variations thereupon. These symbols denote the start of
the object code that has resulted from compiling the source code of the cor-
responding function. An object file also contains references to symbols for
which it does not contain a definition, like _printf in the object file a.o
in figure 1.3. Any further information, for example that fac really is a C
function that accepts an int and returns an int, or that printf accepts any
number of arguments, the first one of which must be a string, is absent from
the object file.

It is the task of the linker, which runs at link time, to resolve references
between object files. Any remaining undefined references it resolves by re-
trieving object files from libraries. Only those objects that actually resolve
an undefined reference will be retrieved from their containing library.

To the linker, a library is a collection of object files. In the figure, 1ibc.a
denotes the standard C library. A library is accompanied by various header
files that declare the interface to the library. In figure 1.3, stdio.h declares
how printf can be invoked. Header files are used by the compiler.

The linker produces object code that does not contain any unresolved refer-

ences. Such code can be executed by a CPU. The file containing the executable
code is called an ezecutable. The executable is a program that can be run.

6 CHAPTER 1. OBJECT ORIENTATION
compilation linking
source files — * objectfles -~ > executable

a.c a.o
#i ncl ude <stdio. h> defi ned: _fac a.out
int fac (int n) undefined: _printf
{

int i, f =1;

for (i =1, i <=n; i++)

f *=1i;
printf ("%! = %\n",
n, f);

return f;
}
b.c b.o
d.c d.o
stdio.h libca
extern int
printf (char *fnt, ...); X.O‘---

y.0 ‘defi ned: printf

|
|
|
z.0 .. :
|
|
|

Figure 1.3: Source, object, and executable code.

The time during which a program is running is called run time. At run
time, the program is supported by the run-time environment. Contemporary
run-time environments provide linker features, thus enabling additional object
files to be linked into a running program. This is commonly referred to as
dynamic linking or dynamic loading.

Chapter 2

Limits of object orientation

2.1 Reuse

One often-touted feature of object-oriented programming is reuse of code [4,
14, 28]. More code is created as time progresses. More code is available to
be reused and to ease the creation of new programs. Reuse of existing code
saves time that would otherwise be needed to design, implement, debug, and
test similar code.

In practice however, reuse of code appears to be rather limited. This is
caused by the fact that the unit of reuse—the class—is also the unit of design:
to reuse a class, its design must fit in the environment where it will be reused.

The reuse problem can be circumvented by the traditional reuse: copy the
source code and modify it to make it fit the new design. However, the mod-
ification of source code is merely reuse of design and not reuse of code. The
advantages of code reuse are absent: the modifications need to be designed
and implemented, and the result after modification needs to be debugged and
tested. Furthermore, any improvements and bug fixes to the original code
will not affect the reuser, who copied the source code instead of linking the
object code. Reuse of source is not reuse of code and, hence, not considered
in this dissertation.

An obvious approach to solving the reuse problem, in an attempt to increase
the level of reuse, is to increase the odds that a class will fit in the environment
where it is going to be reused. The popularity of this approach is shown by
the existence of various symposia devoted to it (e.g., [23, 37, 46]).

Much attention is paid to subjects like domain analysis, the underlying
thought being that if a class is to be reusable, it must at least be reusable
for applications in a single application domain. Another recurring theme
is that of reusable components and the accompanying idea that, in the end,
applications can be built solely from such components. However, a component

8 CHAPTER 2. LIMITS OF OBJECT ORIENTATION

is little more than a different name for a class, and domain analysis does not
guarantee reusability of a class.

The problem of limited reuse is usually addressed by focusing on the devel-
opment of classes, for instance through domain analysis. However the reuse
problem is not merely a development problem. After all, the act of reusing
is an act of consuming the fruit of prior labour, i.e., the classes that were
previously developed. Yet reuse is an important issue to address: limited pos-
sibilities for reuse cause every software development effort to basically start
from scratch. The same or similar abstractions are reinvented, redesigned,
re-implemented, debugged, tested, and maintained. This wastes a lot of time
and effort.

The next section (2.2) discusses various ways in which existing classes can
or cannot be reused in contemporary object-oriented programming languages.
Section 2.3 defines the problem that is addressed in the remainder of this
dissertation. An overview of the dissertation is given in section 2.4.

2.2 Mechanisms

The easiest way to reuse a class is to use it without modifications. Most classes
do not fit this scheme: they are developed as a subclass of their superclass
precisely because the superclass does not suffice. Subclassing a class is an
easy way to adapt a class for reuse. Unfortunately, this simple mechanism is
not sufficient.

Problems with reuse stem from incompatibilities: a class provided by a li-
brary or component does not implement some desired functionality or does not
conform to some desired type. In [7], an excellent example is given that con-
cerns ‘a text processing application [which] may add specialized tab-to-space
conversion behaviour for strings and other collections of characters defined
in the standard library.” Clearly such behaviour is too specialized to fit in a
string class of a standard library. Equally clear is that such behaviour may
very well be part of the string class in some text-processing application.

Below we consider some ways for adding this behaviour to the string class:

e Subclass the string class, i.e., create a subclass of the string class and
use the new class instead of the original, throughout the application.
Add the desired tab-to-space conversion behaviour to the subclass. A
subclass is a specialized version of its superclass and in the application
that is just what is needed: a specialized version of the general string
class.

Unfortunately, this approach fails in many circumstances and especially
when reuse is at hand. When instances of the string class are created

2.3. THE REUSE PROBLEM 9

beyond the control of the user, e.g., in a library, the objects thus created
will be instances of the general string class instead of the subclass.

e Implement the behaviour outside the string class, to operate on strings
that are passed as an argument.

This approach requires the string class to provide operations on which
the approach can be based. For example, if the string class does not
offer a possibility to insert and remove substrings, removing tabs and
inserting spaces is not possible.

In addition, this approach is like a return from object-oriented pro-
gramming to structured programming, where programs are built from
abstract data types (ADT) and functions that operate upon them. An
ADT then resembles a class which only offers behaviour to read and
write the instance variables. Clearly an undesirable approach.

e Employ a wrapper: for every string, also create a wrapper object. In
new code, refer to the string through the wrapper. When invoking old
code, which can handle strings and knows nothing about the wrappers,
retrieve the string from the wrapper and pass it instead of the wrapper.

New code maintains an object-oriented view of a string through the
wrapper. The wrapper can implement the desired functionality to op-
erate upon the string that it wraps, though it is hampered by the same
restrictions as mentioned in the preceding approach. In addition, wrap-
pers and their administration cost execution time and memory space.

In [21], various more mechanisms are described that attempt to address class
incompatibilities during reuse. However, none of the solutions prove adequate.

2.3 The reuse problem

Existing object-oriented programming languages and design methods consider
the class to be the unit of reuse (e.g., [4, 29]), and argue that a class can be
subclassed to make it suitable for each problem at hand. That this assumption
is not generally valid is shown in the preceding section. The assumption
actually restricts reuse: the reuser is as free in reusing a class as allowed,
envisioned, and planned by the developer of that class.

The class provides a mechanism for planned reuse. The advantages of con-
sidering only planned reuse are obvious: it implies a single-design approach
in which the source code of everything is available for the programmer to
modify, adjust, or fix; and for a compiler to read, extract information from,
or otherwise digest. The source code is supposed to provide the necessary
flexibility.

10 CHAPTER 2. LIMITS OF OBJECT ORIENTATION

On the other hand, the disadvantages of considering only planned reuse can
not be dismissed. Widespread reuse cannot be planned; it requires successful
unplanned reuse. Widespread reuse implies extensive use of libraries, which
lack the flexibility offered by source code.

In this dissertation, we plan for unplanned reuse. We examine reuse, reach-
ing for the flexibility offered by source code while being restricted by source-
code unavailability.

2.4 Overview

In chapters to follow, chapter 3 explores flexibility other than the flexibility
of source code, as a key to unplanned reuse in object oriented programming
languages: what is flexibility, what does it encompass, and what kind of
flexibility is offered by existing programming languages. Chapter 4 describes
the design of the TOM programming language, which has been developed to
provide a level of flexibility not offered by existing programming languages.
Chapter 5 describes an implementation of TOM by the author and chapter 6
reflects on the possibilities that are offered by the flexibility of TOM code.
The conclusions of this dissertation form chapter 7.

Chapter 3

Flexibility of code

The flexibility of a tool is determined by its design. The design determines
the many ways in which the tool can be used that were or were not envisioned
by the tool’s developers. This applies to any craft man’s tool; the design of
the hammer is worth mentioning in this context. It also applies to the design
of the tool as a computer program.

Next to flexibility by design, there is flexibility by construction. The parts
of a hammer can be reused in ways not envisioned by the hammer’s creator.
The parts of programs, libraries, and object files, are the pieces of code of
which they are composed; flexibility of the construction is the flexibility of
that code.

The flexibility of code determines the many ways in which the code can be
used that were or were not envisioned, or unplanned, by the code’s developers.
Put differently: the flexibility of code determines the success of unplanned
reuse. This chapter explores unplanned reuse through flexibility of code.

3.1 On the origin of code

A running program uses code from various sources. As shown in figure 3.1,
underlying all code is the hardware, which is the machine on which the pro-
gram is executing. The first layer of code is the operating system (OS), which
abstracts programs from the hardware. The OS and hardware together are
commonly referred to as a computing platform, or plaiform for short.

The next two layers, libraries and program, together form the ezxecutable
that is run when the program is run. The libraries are used by many pro-
grams. The last layer represents additional object code that is not part of
the executable proper, but linked into the program at run time. This kind of
code is usually referred to as plug-ins.

12 CHAPTER 3. FLEXIBILITY OF CODE

21§58

|3 &

=
oS

| |

w hardware !

Figure 3.1: Four kinds of code in a running program.

In the following sections, we discuss these four kinds of code and their
origins, as seen from the perspective of their respective developers. Since
the subject of this dissertation is unplanned reuse, each of these kinds of
code is assumed to be developed by a different team. When, for example,
a team developing a program would also develop a library to be used in
conjunction with the program, the library and program together would form
a single design, and reuse of the library code would not be unplanned. Having
separate teams for operating systems, libraries, programs, and plug-ins is
common practice.

A consequence of considering different teams, which are separated in space
and time, is the non-modifiability, and possible unavailability, of the source
code of some parts of the final product. For example, a team developing
a program can not modify a library used by the program. If the function
printf in the C library were not to their liking, they could not change it, for
it would need to be changed on all platforms providing an ANSI C library
implementation.

3.1.1 The program

The program is that part of an executable written by the team developing
the program. In general, the program depends on libraries (section 3.1.2),
and together they depend on the services offered by the operating system
(section 3.1.4). Furthermore, any plug-ins loaded depend on the program:
the program supports many plug-ins (section 3.1.3).

3.1.2 Libraries

A program usually depends on several libraries. A library is available in the
form of binary code, accompanied by an interface declaring the functionality
that is offered by the library. The interface is used at compile time. As an

3.1. ON THE ORIGIN OF CODE 13

example, an ANSI C library on a UNIX system consists of the 1ibc.a archive
of object files plus the interface in header files stdio.h, stdlib.h, &c.

A library can be static or dynamic: a static library is a collection of object
files, for use by the linker when creating an executable. Dynamic libraries are
also known as shared libraries: on a single computer their code is used by many
programs, yet the actual code, i.e., the bytes making up the instructions, of
the shared library is present only once. Linking with a static library adds the
machine code from that library to the executable program. Linking with a
dynamic library only attaches an association with the library to the program.
This association is substituted by the library code every time the program is
run. Consequently, when a new version of a dynamic library is installed, the
program will automatically use the code of that new version. Put differently,
the code in a dynamic library can change while the program executable does
not. On the other hand, when a new version of a static library is needed,
the program and library must be relinked to create a new executable, by the
developer of the program so the program can be recompiled if needed.

Dynamic libraries are mostly useful on computers with many programs to
employ them, or when the libraries are updated more frequently than the
programs. They are usually not available on smaller machines with only a
few or a single program, for instance embedded systems.

3.1.3 Plug-ins

A plug-in is object code that is dynamically linked into a running program.
The plug-in extends the capabilities of the program, usually in an application-
specific way that was anticipated by the program developers and part of the
program’s design.

In general, plug-ins for a program are developed after the program has been
released, by programmers who do not have access to the program’s source and
who are not in a position to modify it. Requiring recompilation of the program
to suit a new plug-in is impractical, to say the least. Similarly, a new version
of the program can be installed without simultaneously upgrading all plug-
ins, i.e., recompilation of the program must not require recompilation of the
plug-ins.

Practical examples of various kinds of plug-ins are:

document processing Possibly the best known plug-ins are the processing
filters offered by many a graphic-image manipulation program, where
each plug-in offers some kind of processing of the image.

input filter Input filters enable a program to read file formats which it does
not normally know how to handle. Input filters can be built into a
program, but this obviously fixes the formats that can be read. Input

14 CHAPTER 3. FLEXIBILITY OF CODE

filters can also be accommodated in plug-ins, with the advantage that
they can be updated independently of the program and that it allows
third parties to develop and release input filters for their favourite for-
mats.

output filter Output filters allow a program to write files using various file
formats. Their functionality is similar to that of input filters.

other There obviously is no limit on the number of kinds of plug-ins in
addition to the above. It is interesting to briefly mention some of the
more visible ones:

programming Many programming languages can be put to practical
use by creating executable programs through compilation and link-
ing. For some programming languages, the compiler is part of an
environment in which new applications are written and deployed.
When the environment itself is a running program, the applications
thus developed can be regarded as plug-ins.

Outstanding examples of this paradigm are the Oberon system,
in which applications can be developed using the Oberon lan-
guage [45], and Emacs, which can be extended in Emacs-Lisp [39].

document generation Input and output filters convert a document
in a program’s internal data structures to or from some external
file format. Not uncommon are plug-ins that generate documents,
such as scanner plug-ins for an image manipulation program, which
are used to control the scanning device and create new documents
from the images thus scanned.

document display Mostly seen in various web browsers are plug-ins
that enable the inline display of content that can be present in
an HTML document but which the browser itself can not handle.
Examples of such content are additional image formats and addi-
tional kinds of documents, e.g., moving images and virtual-reality
models.

3.1.4 The operating system

Underlying all programs running on a machine is the operating system (OS)
kernel. It can range from a full-featured UNIX kernel that manages a com-
puter for multiple users, to a mere interrupt handler on an embedded system.
Most programmers have no knowledge of it beyond some idea of the function-
ality it offers.

The programming interface to a kernel is usually very crude. It consists
of system calls that are often implemented as processor traps or software

3.2. A TAXONOMY OF CODE 15

interrupts. This is necessary because a system call requires a switch of the
processor to a higher privilege level. Since such calls differ from one CPU
model to the next, every OS comes with a library that enables the invocation
of system calls through function calls in a popular programming language
(like C).

The OS is generally not something one can choose; most often the target
platforms are dictated by the application. When a program is developed to
run under various different operating systems, one usually employs one or
more libraries in the desired programming language to provide a common
application programming interface (API) to abstract from the differences be-
tween those operating systems. For example, the IEEE POSIX 1003.1 stan-
dard defines a useful C API that is available on most modern operating sys-
tems [24].

An operating system kernel is normally not considered to be part of a
running program; the two can reside in different memory address spaces for
example. The kernel manages the machine on which the program runs and for
security reasons it is not modifiable or extensible by or for just any program.
Because of these reasons, and because of the availability of libraries in a high-
level language that provide an easy interface to the OS kernel, in the remainder
of this dissertation, the kernel is not further considered as a contributor of
code in the running program. Where needed, the kernel will be referred to
through its API library.

3.2 A taxonomy of code

Every program is written to depend on certain libraries: the program depends
on functionality that is offered by the libraries. Similarly, every plug-in de-
pends on a certain program. In the other direction: a library supports many
programs, and each program may support many plug-ins. Figure 3.2 depicts
this code support relation.

@@

Figure 3.2: Code support relation.

An edge from node A to node B means that code from node A supports code
in node B. The self loops express how a library can support other libraries
and a plug-in can support other plug-ins.

16 CHAPTER 3. FLEXIBILITY OF CODE

The inverse of the code support relation is the code dependency relation: if
code A supports code B, then code B depends on code A.

The absence of an edge from the library node to the plug-in node suggests
that a plug-in can only depend on the program and not on any library. This
is a mere simplification that corresponds to using a block diagram like in
figure 3.3b instead of the diagram in figure 3.3a. The difference is cosmetic:
of course a plug-in that is loaded into a C program may invoke the printf
function that is provided by the C library.

plugin plugin
program program
library library

(@) (b)
Figure 3.3: Transitive code support: explicit (a) versus implicit (b).

The transitive closure of the code support relation implies the following
taxonomy of code, which is depicted in figure 3.4.

present code Code that is being developed by the current programmer who,
by definition, has modifying source access.

future code Any code represented by the nodes that are reachable from the
present code in the code support relation.

past code Code depicted by the nodes that are reachable from the present
code in the code dependency relation.

future
code

Figure 3.4: Past, present, and future code.

Any code, be it from the program, a library, or a plug-in, can be regarded as
present code, which obviously influences the view on other code. This relation
between the history of code and the taxonomy of code is depicted in figure 3.5.
The top row shows the code taxonomy graph, partially unfolded; the three

3.3. SOURCE BOUNDARY 17

bottom rows show the code support graph, also unfolded. Depending on
whether a library, the program, or a plug-in is considered as present code, the
program will be regarded as future, present, or past code.

past
code

future \
code

oo
hté

Figure 3.5: The notion of present code depends on the point of view.

3.3 Source boundary

During the development of a library, all future demands upon that library,
by all programs that will be using it, cannot be known. In general, when de-
veloping present code, the demands by future code cannot be known. Hence,
each forward traversal of an edge in the code taxonomy graph in figure 3.4
crosses a boundary of anticipation.

Similarly, each backward traversal of an edge crosses a boundary of mod-
ifiability: the developer of present code cannot adjust past code, like the
plug-in developer cannot modify the program and the program developer can
not modify the libraries. Such boundaries of modifiability are an example of
source boundaries: a source boundary separates code with different levels of
source code availability. A source boundary separates present code from past
code.

The following levels of source availability can be distinguished:

1. Modifying source access.

18 CHAPTER 3. FLEXIBILITY OF CODE

This level of source availability is, by definition, possible only for present
code, since only present code can be modified.

2. Full source access but without ability to modify.

The sources can be read but not modified (modification is futile). This
applies for instance to libraries as past code, as explained in section 3.1.
This level can be referred to as open source; the programmer can read
the source to learn from; a compiler can compile it. If modifications are
desirable, the programmer can send patches to those who have modify-
ing source access.

3. Availability of the interface only.

The interface to the code is available (written in the same language as
the source code); the implementation is only available as object code.
This level can be considered as closed source. For example, it is the usual
situation for libraries written in C, with the object code in /usr/lib
and the interface to the library as header files in /usr/include.

4. No source access at all.

Only object code or an executable is available. If any information is
needed, such as an interface, it needs to be retrieved using reverse en-
gineering techniques or a debugger.

It is clear that a source boundary influences reusability. In most program-
ming languages the flexibility of reusing past code depends on the level of
availability of the sources, even of past code.

Example

An example of sensitivity to source availability is Eiffel: in Eiffel, to create
a subclass, the full source of all superclasses is required. This requirement is
imposed by the inheritance semantics of Eiffel.

At the boundary between the program and a plug-in, the problem is worse.
Dynamic Linking in Eiffel (DLE) [30] allows code to be dynamically loaded
into a program. During compilation of this program, the compiler must know
that dynamic loading will take place. This is because in the case of dynamic
loading the compiler cannot run as a whole-program compiler and conse-
quently cannot use its full optimization features. However, each time the
application is recompiled, DLE requires the plug-ins to be also recompiled,
thus requiring recompilation of all plug-ins when a new version of the pro-
gram is released. Moreover, DLE allows only one plug-in to be loaded into a
running program. Together, these restrictions make the use of plug-ins for an
Eiffel program an uninteresting exercise.

O

3.4. LANGUAGE BOUNDARY 19

When a linker creates a program by linking the object files and libraries, it
can be aided, if necessary, by any other tool in the development environment.
When a plug-in is linked into a running program, the development environ-
ment and all source code are absent; only the run-time environment (offered
by the run-time library) is available. The run-time environment cannot deliver
the same functionality as a development environment. As a consequence, the
boundary between a library and a program is friendlier than the boundary
between a program and a plug-in.

3.4 Language boundary

Reuse of past code depends on the programming languages that are involved.
If past code was written in a language different from the present code, support
by glue code is needed. Considering glue code as present code, it provides a
means for future code to make use of past code. The future code is written
in the target language and the past code was written in the source language.
Glue code bridges a programming language boundary.

When glue code is needed, the possibilities for reuse of code are limited.
As an example, consider the case of the source and target languages each
being a different object-oriented programming language. The glue code will
provide, in the target language, a proxy class for each class in the past code.
Instances of a proxy class will wrap instances of the corresponding original
class. However, the class hierarchies remain separate and subclassing a proxy
class will not imply a new subclass in the past code: since the wrapping
is unidirectional, newly introduced polymorphism in present code will not
propagate back to past code.

This dissertation focuses on the issues of using a single programming lan-
guage; the issues concerning programming language boundaries are not fur-
ther considered. Dependence on past code on the other side of a programming
language boundary can be expressed as a dependency on the glue code that
is used to access that past code. Note that this exclusion coincides with the
exclusion of the operating system from the code taxonomy: the kernel API
library in section 3.1.4 is simply glue code.

3.5 Flexibility paradigms

Existing object oriented programming languages cater largely for planned
reuse, as discussed in section 2.3. Everything in a design is planned and the
sources are assumed to be as available and flexible as in present code. They
do not discern between present and past code, ignore the difficulties in using
past code, and do not take precautions for future code.

20 CHAPTER 3. FLEXIBILITY OF CODE

This problem has been studied before, especially in the context of the reuse
of existing (past) code. This section gives an overview.

3.5.1 Type adaptation

Type adaptation [21] addresses unplanned reuse of components: a component
is a collection of classes, and type adaptation allows the interface of a class or
the classes to be adjusted. To this extent, type adaptation provides types to
be added to the type hierarchy, operations to be added to types, and existing
operations to be renamed. However, [21] imposes several restrictions:

e Though the type adaptation does not need access to the source code of
the components, the components must be delivered in an intermediate
format: this format does not need to be the source, but it should not
be machine code. It would provide the necessary flexibility while still
allowing a compiler to optimize after type adaptation.

e The new operations are not allowed access to the component’s private
details. While this allows the component to be replaced with a new
version more easily—a public interface is less likely to change than some
private implementation details—it does imply that a simple error by
the component writer, like an omission in the public interface of an
implementation detail that does not need to be private still limits the
possibilities to reuse the component. (After all, the need for something
being private is highly subjective.)

The requirement of an intermediate format makes the approach less inter-
esting, or at least not directly applicable to existing languages. Type adap-
tation has not been applied to a real programming language or programming
environment.

3.5.2 Extension hierarchies

In [31], the issue is addressed of extending existing classes instead of adding
new classes. This is important when one wants to extend the behaviour of
objects created by existing code, of existing objects (e.g., objects stored in a
database), or instances of existing subclasses. The usual approach of editing
the source code of the existing class is undesirable.

In [31] the concept of extension hierarchies is introduced. Such a hierarchy
contains extensions to the base hierarchy, and is usually sparse. Extensions
can be merged before application to the base hierarchy or they can be applied
in sequence; conflicts are considered to be a problem and must be resolved.
Issues involving an updated base hierarchy are considered too.

3.6. EXTENSIBILITY 21

The ideas behind this work have been implemented as part of a C++ com-
piler from IBM [22] that provides extension hierarchies through source com-
position, a compile-time activity that requires all source code to be present.
As a result, however, it can be applied only to present code.

Even though it does not provide flexibility beyond source code manipula-
tion, this work represents a significant boost in the flexibility of C++. Un-
fortunately, it is available only as an unsupported extension of the particular
compiler from IBM.

3.6 Extensibility

3.6.1 Extensibility operations

A programming language provides extensibility when present code can adjust
behaviour that is defined in past code. For an object-oriented programming
language, extensibility of past code implies extensibility of classes.

The level of source availability can be a parameter to the level of exten-
sibility that is provided. When the only way to extend a class is to edit its
source, extensibility it absent. When it can be extended without modifying
its original source, some level of extensibility is present. When only the source
code that defines the interface to a class is needed to extend the class, the
level of extensibility is higher than when the full source of the implementation
of all superclasses of the class is necessary for the class to be extensible.

The tab-to-space example in section 2.1 shows that the ability to add meth-
ods is necessary. To continue the example, suppose the developer of the stan-
dard library envisioned that a large number of text processing applications
would use the library. This fact would be significant enough to justify the
inclusion of tab-to-space conversion behaviour in the standard string class.
Unfortunately, his implementation of the conversion behaviour would assume
a tab stop every eighth column, being insufficient for some applications.

Suppose that in in our application, we need tab-to-space conversion with
variable tab stops, which we can provide as var-tab-to-space. However, using
a different name for this operation does not solve the problem, since the
library-provided tab-to-space conversion is already invoked from past code.
The only solution is to replace the existing tab-to-space implementation with
our implementation of var-tab-to-space, i.e., to provide a new implementation
for the existing operation.

The level of extensibility offered by an object-oriented programming lan-
guage depends on the level at which it offers the following functionality for
classes defined by past code, without imposing demands on past code, like
requiring recompilation:

22 CHAPTER 3. FLEXIBILITY OF CODE

o Add methods.

If a newly added method has the same method signature as an existing
method, the new method replaces the existing method.

o Add state.

Extra state information may be needed by newly added methods.

e Add a superclass.

Adding a superclass to a class introduces additional methods and state
for the instances of the class, and additional supertypes for them to
conform to.

More intricate modifications to the inheritance hierarchy are possible than
simply adding new superclasses, but they do not fit in a nice scheme as pre-
sented here. An example of such a modification is class posing in Objective-C
(see section 3.7.2).

3.6.2 Extensibility time

In addition to the many ways in which code can be amended, i.e., the how, the
moments in time at which such modifications are possible, i.e., the when, are
another dimension of extensibility. The following moments can be discerned:

compile time The easiest of these situations: when a compiler has knowl-
edge about any extensions, it can take precautions for it in the code
that it generates.

link time Code has been generated without knowledge of any extensions, but
the linker is still available as a tool to which decisions can be delegated.

run time The harshest of situations, where no compiler, no linker, nor any
other tool is available. Extensibility has become the job of the dynamic
linker and the run-time environment.

So far, the removal of methods and state from the instances of a class has
not yet been mentioned. Since state can only be removed if all methods that
depend on it have been removed, such removal is restricted to compile time,
by a compiler knowing all methods accessing that state. Such knowledge is
not available at link time or run time, hence state can only be removed at
compile time.

Similar reasoning can be applied to methods: unused methods can possibly
be removed at compile time. They can be ignored at any time.

3.7. PRIOR ART IN EXTENSIBILITY 23

3.7 Prior art in extensibility

Extensibility is available in various programming languages to a certain ex-
tent. For example, in Smalltalk the methods of a class are grouped in unre-
lated collections called categories [15]. A category can be added to a class,
extending the class with the methods of the category. As another exam-
ple, Oberon offers a complete operating environment which is extensible [18],
though not in the sense defined in the previous section: instead, classes are
rigid and programs developed in Oberon are plug-ins for the Oberon system.

This section discusses a few languages and the extensibility they provide.

3.7.1 CH+

C++ code is not extensible, by design. It appears from the most recent
edition of the C++ book [41] that everything that possibly can be done at
compile time, should be done at compile time. Such an approach strongly
reduces the flexibility of the resulting code since it is possible for one change
in the source code to induce a myriad of changes in the object code.

An example of such far-reaching changes is offered by so-called inline func-
tions: usually, a function invocation appears in object code as a function call;
when an invocation is inlined, the object code for the invocation contains
code of the function itself instead of a call. Function invocation inlining saves
the overhead of the invocation, but when a function is changed all inlined
invocations of that function must be recompiled for the change to fully take
effect.

Being a popular language that has taken a long time to standardize, people
have proposed many changes to C++. An interesting attempt at increasing
the flexibility of C++ code was the suggested addition of signatures [2]. A
signature is a collection of method signatures, i.e., declarations of, in C++
terminology, member functions. Every class that implements the necessary
member functions implicitly conforms to the signature type. The signature
type presents a new supertype that can be used as an abstraction from mul-
tiple classes that, without the signature type, are unrelated. The signature
can be used to fit classes from different designs into one.

Example
Consider the following declarations:

signature foo

{

void aap (void);

}s

24 CHAPTER 3. FLEXIBILITY OF CODE

void f (foo&);
Furthermore, there is a class bar and the following function:

void g (bar& b)

{

f (b);

}

Then the call to £ with formal argument type foo& and actual argument type
barg is valid if, and only if, bar implements all member functions declared in
the signature foo.

O

Signatures appear to provide a mechanism that is already provided by pure
virtual classes, i.e., classes that contain declarations, and no implementations,
of virtual member functions (C++ terminology for dynamically bound meth-
ods). Like a signature, such a class provides no implementation and is mostly
used for the type it defines. The main difference between a pure virtual class
and a signature is that classes must be inherited at compile time, whereas a
class implicitly conforms to a signature, without recompilation being neces-
sary. (Which is exactly why signatures are interesting, though apparently not
interesting enough to be included in the ANSI C++ language definition.)

3.7.2 Objective-C

Objective-C is a combination of the C language with the object orientation
of Smalltalk. Being modeled after Smalltalk, Objective-C has categories. A
category can introduce new methods to a class and, depending on the par-
ticular implementation of Objective-C that is used, existing methods can be
replaced [10, 36, 38]. For example, [36] allows methods to be replaced: meth-
ods in a category override methods in the class that it extends; dynamically
loaded methods override methods that were present before loading.

Objective-C provides another extensibility mechanism called class posing.
A class B can pose as its direct superclass A, which has the effect that every
direct subclass of A actually inherits from B instead of A, with the exception
of B itself. Posing is a run-time #¢rick which is possible only because, in
Objective-C, every method invocation is dynamically bound, even those to
super (see section 4.5.4 on messaging super). Also class messaging is affected
by posing: every message to the A class is actually passed to the posing class
B.

When B poses as A, B must not introduce new instance variables. This
restriction comes from the single-inheritance semantics of Objective-C: single
inheritance implies that in addition to the state defined by a class, state

3.7. PRIOR ART IN EXTENSIBILITY 25

originates from only one other source: the single superclass. This allows the
state of each object to be administered as a straightforward struct, but it
can not cater for the addition of state by B to the other subclasses of A, hence
the restriction.

Example

As an example of the flexibility of Objective-C, though not using class posing,
consider a situation where it is necessary to fix bugs in a class A defined in
past code, but it is impossible to comply with the restrictions of categories or
the rules of posing, for instance because a straight fix would need extra state
in the instances of the class. When A does not have any subclasses and it is
known that future code will not introduce any, for instance because the code
when deployed remains under our control and we do not envision future code,
a very nice hack can be performed.

In Objective-C, all classes inherit from the Object class. Object provides
an alloc class method, which is inherited by every class and which is the
designated way to allocate new objects. The hack is that it can be overridden
to return something quite different from a fresh instance of A, as the category
in the following example shows (in Objective-C syntax):

@implementation A (Foo)

+alloc

{

return [MyFixedA alloc];

}
Q@end

In this case, one is concerned more with reusing past code that allocates

instances of A than with reusing the class A itself.
O

3.7.3 Cecil

Cecil [7] is an object-oriented programming language that employs multi dis-
patch: in contrast to the more common single dispatch, where the method
to be invoked is determined solely by the receiver of the message, with multi
dispatch, the method is determined by the arguments. As a result, there is
no explicit receiver and any combination of the arguments can be considered
to be receiver (section 4.5.2 further discusses multi dispatch).

When multi dispatch is used, adding methods is easy since methods are not
particularly bound to a single receiver or its class. Methods are dispatched

26 CHAPTER 3. FLEXIBILITY OF CODE

on the arguments, irrespective of whether the argument classes involved exist
in past or present code.

Cecil provides the extension declaration, which can extend an existing ob-
ject, adding extra state or introducing additional superclasses. For this pur-
pose, the source of the object does not need to be modified.

The designated Cecil compiler is Vortex [6], which is a whole-program com-
piler. A whole-program compiler decides statically whether the flexibility that
is present in the program code is actually used at run time. For example, a
message-send at a certain location in the code can be implemented by a direct
method invocation if it can be shown that the class of the receiver does not
vary at run time. The use of multi dispatch makes whole-program compilation
almost mandatory if the resulting code is to exhibit some speed.

A whole-program compiler needs access to all source code. Furthermore,
for a recompilation to not take too long, the compiler requires a delicate
dependency analysis mechanism to enable incremental recompilation, where
only those parts of the program are recompiled that are affected by a change
in the source code.

The Cecil language provides ample extensibility that is also supported by
the compiler, but any flexibility at run time is necessarily absent.

3.8 Résumé

The languages described in the previous section provide extensibility in some
form or another. Of the languages surveyed, Cecil is the most extensible.
However, due to the nature of the language, the Cecil compiler must remove
as much flexibility from the code as possible, leaving no extensibility at run
time.

The compile-time extensibility of Objective-C is maintained at run time,
but the level of extensibility provided by the language is limited: Objective-C
allows addition of methods, but the introduction of extra state and super-
classes is not possible.

Full extensibility at compile, link, and run time does not appear to be
offered by existing programming languages. Time and incentive to devise
one!

Chapter 4

TOM: Design

This chapter discusses the design of the TOM programming language. The
goal of TOM is to be an object-oriented programming language that provides
flexibility of code as defined in chapter 3.

Code flexibility means extensibility of code at compile, link, and run time.
Past, present, and future code are equal. Reuse is not restricted. The flexi-
bility does not depend on the availability of source code.

4.1 Objectives

4.1.1 Application domain

TOM is a generic object-oriented programming language aimed at the imple-
mentation and maintenance of complex systems. Such systems feature the
following properties:

execution speed During development, the size of code and its performance
are largely irrelevant; a short turn-around time of the compile-link cycle
is what is important. When the final product is to be deployed, code
size and speed are of the utmost importance, and the run time required
by a compiler to produce that code is irrelevant.

Fast compilation is easily provided by a simple compiler, without many
optimizations. Fast code, or even faster special-purpose hardware, is
delivered by a smart compiler, undoubtingly at the cost of very slow
compilation.

restrained development time In today’s world, early market presence is
an important factor for the success of a product and, consequently, time
to market should be short. Furthermore, software is a significant part of
many products and it is becoming more complex with every new product

28 CHAPTER 4. TOM: DESIGN

that is developed. This makes writing the software both more important
and a more difficult task to accomplish with every new product that is
developed.

4.1.2 Target machine

TOM programs are not bound to a particular kind of hardware: nothing that
can be written down in TOM has a meaning that depends on the particular
compiler or target platform being used. The target can be an embedded
system, a UNIX workstation, a Java Virtual Machine (JVM) [27], hardware,
&c; the difference will not be apparent from looking at the source code.

TOM is intended to compare favourably to other object-oriented program-
ming languages in use for the development of programs that run on personal
computers. This includes languages that are used for similar goals or targets,
such as Objective-C, Eiffel, C++4-, and Java.

4.1.3 Deployment

Deployment of code is the way in which code is used. When a program is
run, irrespective of whether it contains bugs, the code of the program is used
as envisioned by the program developer. However, when the program loads
plug-ins, which were developed by other programmers, the program code has
been past code to the developers of the plug-ins. It is very well possible that
the developer of the program, i.e., the programmer of past code, has made
assumptions about the program and its code, that clash with the needs of the
programmers of the plug-ins and their code.

The problem is that the developer of present code can impossibly foresee
how future code is going to use the fruit of his present labour. The developer
makes certain assumptions about future code, and he can be wrong. The same
problem also occurs with assumptions by library developers that appear not
to be true for all programmers that want to use the library. Therefore, an
objective governing the design of TOM is for the programmer of some code
to not be able to annotate in code his assumptions about the deployment of
that code.

A few examples illustrate the limitations induced by assumptions about the
deployment of code.

Example

C++ provides the virtual keyword that can accompany member functions.
Member functions that are virtual are dynamically bound; normal, non-
virtual, member functions are statically bound. The common practice is

4.1. OBJECTIVES 29

that only when you expect a subclass to override a member function, the
member function should be virtual [4].

However, there is another important difference between virtual and non-
virtual member functions. Whereas virtual implies dynamic binding, thus
enabling polymorphism, the absence of virtual disables polymorphism. As
a result, if a programmer chooses to make a member function not virtual,
he reduces the possibilities for useful redefinition by subclasses.

O

It is clear that if the developer follows some idea about the use of his
code, he will be limiting the possibilities for reuse. Matters are worse when
the envisioned use must be annotated in the code, like in the C++ example
above. For a programming language to not restrict reuse, it must not provide
or require such annotations.

Examples

The C++ virtual keyword has more reuse-influencing uses. In figure 4.1, a
class D inherits from both B and C, each of which inherits from A. D inherits
A twice: a case of repeated inheritance. When the base class A is inherited
virtually by B and C instances of D will carry the state introduced by A
only once. However, when the inheritance of A is not annotated by virtual,
the instances of D will carry the state of the base class A twice: once because
of inheritance through B and once through C.

A A A
/N AN /
B C B C
\D/ N S

D

(@) (b)
Figure 4.1: C++ repeated inheritance virtual (a) or not (b).

In this example, when D resides in present code and the other classes in
past code, the example shows that decisions by past code about the layout of
subclasses affect present code. The problem is that the present code can not
undo or change those decisions, yet is affected by them.

In Java, the final qualifier, when applied to a class, means that subclassing
that class is not possible. Java needs this restriction for the secure deployment
of Java applets. For example, the Java String class is final [8] because a
subclass might provide modifiable strings and strings that are modifiable dur-
ing sensitive operations can introduce a breach of security. However, while the

30 CHAPTER 4. TOM: DESIGN

String must be final for deployment as an applet, it proves an unnecessary
restriction when used in a normal program.

The examples so far of annotated assumptions are all cases of modifying
the semantics of certain constructs. An example of how assumptions dictate
the time at which code is linked is given by Eiffel. In Dynamic Linking
in Eiffel (DLE), a class that will be loaded at run time must inherit from
DYNAMIC [30].

O

Programming languages employ other qualifiers than mentioned in these
examples. For example, in many object-oriented languages, access to state
and behaviour can be restricted by using protected and private qualifiers.
However, the difference between for example a private method and a non-
virtual method is that private is a mere access restriction whereas virtual
changes the semantics. More importantly: in the light of extensibility, an ac-
cess restriction is something that could be undone or otherwise circumvented,
which is not true for a semantic change.

4.1.4 Extensibility

Extensibility is the raison d’etre of TOM.

Extensibility is the ability to modify features of a class, such as adding
methods or state. When a certain feature influences code in one location, only
one location must be updated when the feature is modified or replaced. When
a feature influences code in one hundred locations, then one hundred locations
must be updated to reflect changes in the feature. When all those locations
reside in present code, location maintenance is a compile-time or compiler
aspect. This situation applies to a whole-program compiler—which has access
to all source code of the program it is compiling—or is, for instance, expressed
in a makefile as a dependency of an object file on the implementation source
file (.c) and any interface header files (.h) that it needs.

When the affected locations do not all reside in present code, problems
arise. Examples are a change in a library feature that is used in several
programs or when a program feature changes that is used by plug-ins. When
static libraries are used and a program must be updated to use a new version
of the library, with its new features, the program must be relinked to use
the new library. Relinking is done by the developer of the program, who
can recompile the program to incorporate those changes in the library that
influence the program’s object code. However, when dynamic libraries are
used, the library code can change while the program remains the same: object
code of the program will not be updated, even if it depends on the source code
of a library feature that was changed, with possibly catastrophic consequences.

4.1. OBJECTIVES 31

This problem is called the fragile code problem. A line of object code is
always generated as the translation of a certain line of source code in some
source file. Code is fragile if the object code depends on more than just that
single line of source code. The more lines of source code influence that line
of object code, the more fragile is the object code. In the other direction, the
more lines of object code are influenced by a line of source code, the less easy
it will be to adjust or replace that particular source code. This means that
fragility hampers extensibility.

Examples

In C, the difference between interface and implementation, and the level up
to which the implementation can be hidden, varies per language construct.
For example, the stdio functionality can be offered perfectly well through
the following definition of the FILE type in stdio.h:

typedef struct stdio_file_struct *FILE;

The exact contents of the struct is irrelevant for a compiler when invoking
the FILE manipulating functions and can therefore be hidden from the user.
Since code can not access the contents of the struct, it will not be fragile with
respect to changes in the size of the struct or in the order of the struct’s
fields or other modifications in the fields’ type or offset from the base of the
struct.

The following example shows a less strict distinction between interface and
implementation. Consider a simple function, e.g., printf. We can read in
the manual what it does and the C compiler reads in stdio.h how it can be
invoked. However, in the object code, an invocation of printf will actually
result in a subroutine call to the printf (or _printf) label: our invocation
of some functionality through its interface has resulted in a unchangeable
association with its implementation.

To circumvent this problem, C offers function pointers to separate function
interface from function implementation, even without a syntactical difference
in invocation, making them attractive to use. Furthermore, without using
function pointers, linking with a different library can often be used as a link-
time trick to override a certain library function with an alternative implemen-
tation. However, linker tricks are platform dependent. The precise effect on
past code that also invokes the overridden function can not be known: it can
range from the desired effect to no effect at all.

O

32 CHAPTER 4. TOM: DESIGN
4.2 Design philosophy

Complementary to the design objectives of a language is the philosophy un-
derlying the design. The philosophy underlying the design of TOM can be
summarized as: simplicity and freedom. For instance:

o Employ a single mechanism for a single paradigm and variations thereof.

For example, C++ signatures. (see section 3.7.1) introduced a new
kind of types to which an object can conform: signature types. Objects
that implement the methods declared by the signature type implicitly
conform to that type. If the methods are declared by a class instead
of a signature, the object must explicitly inherit the class to conform
to the type defined by the class. Thus, apart from the implicit type
conformance, signatures offer nothing that classes do not already offer.
Therefore, signatures clash with the rule of a single mechanism for a
single paradigm.

e Stay far from reasons of implementation.

If a language feature can only be explained because of a reason that is
concerned with compiler writing or other details of language implemen-
tation, the feature should not exist.

To continue the previous example: even though the difference between
signatures and certain uses of classes is the difference between implicit
and explicit conformance, the difference is relevant, and consequently
signatures are interesting, only because of how C++ compilers (must)
implement C++.

As another example, C++ non-virtual member functions do not ex-
hibit polymorphism, whereas virtual member functions do. Yet non-
virtual functions exist because of the implementation reason that when
using a simple compiler, they are faster.

e Stay far from historical reasons.

In many languages, things are done simply because they have always
been done that way. An example is provided by the number of values
that can be returned by a function. A mathematical function returns
a point in a multi-dimensional space; in most programming languages,
a function returns a single value, i.e., a point in the single-dimension
space induced by its type. Exceptions exist, like Common Lisp where a
function can return multiple values, but the caller must retrieve them
separately if so desired [40]. At the same time, there is no good reason
why not to allow multiple return values.

4.3. LANGUAGE BASICS 33

e Do not constrain the writer of future code.

The writer of the superclass (past code) can in no way direct or restrict
the possibilities of the writer of the subclass (future code). Put differ-
ently, a class is not closed; it is always amendable by a subclass or an
extension.

e Do not constrain the writer of past code.

The class must be amendable without making its use impossible. For
example, a class in a shared library or in dynamically loaded code must
be able to change, without affecting superclasses or subclasses. Put
differently: it must always be possible to add behaviour and state to
classes defined in past code.

4.3 Language basics

The remaining sections of this chapter discuss various aspects of the TOM
programming language and how they support or advance flexibility of code
through extensibility. As a start, the current section discusses a few language
basics and gives examples of TOM code. Understanding these will aid in
understanding the examples in the sections to follow.

Section 4.4 discusses the structure of objects, classes, the class hierarchy,
and how objects can be extended and adjusted; section 4.5 explains meth-
ods. Section 4.6 discusses a few additional, relevant but otherwise unrelated,
language topics.

Section 4.7 gives a short overview of features that are available at run
time to further enhance the flexibility provided by the language; section 4.8
explains a few compile-time language features. Section 4.9 concludes with
some remarks concerning missing features.

The syntax of TOM does not receive much attention, since concrete syntax
is a secondary issue and it is only needed in this dissertation to make the
examples legible. (It resembles that of C.)

4.3.1 Units

A TOM program uses TOM libraries. Each library is a unit and each program
is another one. Each unit is implemented as a whole: all code in a unit is
present code at the same time. A unit contains classes and provides a name
space for their names.

34 CHAPTER 4. TOM: DESIGN

Example

A hello, world example program in TOM consists of a unit with a single
class. If this class is called Hello, it is contained in the TOM source file
hello.t, and we call the program unit hello, then the unit file hello.u,
which describes the unit, looks like this:

unit hello

{

uses tom;

file "hello.t"

{
class Hello;
}
}

The clause uses tom expresses a dependency of this program unit on the
library unit named tom. The tom unit is the TOM standard library; it is
needed by every TOM program. Consequently, every unit depends on the
tom unit.

The contents of the file hello.t is shown in an example below.
O

There is no difference between a library unit and a program unit, though
usually the program unit is the unit that defines the main method (execution
of a program starts with an invocation of the main method). Furthermore,
the program unit usually depends on several library units, while none of the
other units depend on the program unit.

Like the similarity between library unit and program unit, there is no dif-
ference between a program unit and the plug-in units that can be dynamically
loaded. Usually a plug-in depends on the program unit, though that is not
necessary. Since every unit ultimately depends on the tom unit, the program
and plug-in share at least that unit.

Example

To complete the hello, world example, the file hello.t, which according
to the unit file defines the Hello class, looks like this:

4.3. LANGUAGE BASICS 35

implementation class Hello

int
main Array args

[[[stdio out] print "hello, world"] ni];
return O;

}

end;
implementation instance Hello end;

To describe the meaning of the TOM code in this example, we start by observ-
ing that this file, hello.t, contains the implementation of the Hello class.
Every class is fully defined by the state and behaviour of its class object and
its instances. In our example program, we will not need instances of the
Hello class, so their definition is rather empty. For the class object, no state
is necessary and the only behaviour defined is the main method.

The name of the main method in the example is set in italics. To enhance
readability for the eye that is not accustomed to TOM code, method name
parts in the example code throughout this dissertation are typeset in an italic
font as opposed to the monospaced font that is used for all other elements
of code. This is for the purpose of readability only; typographic accents are
neither used by nor necessary for a TOM compiler or programmer.

To continue the example, the main method returns something of type int
and it accepts one argument of type Array. In this example, this argument
is referred to by the name args.

Our main method contains three method invocations or message-sends. A
message-send is written in square brackets [...]. The first expression within
the brackets denotes the object being the receiver of the message; it is followed
by alternating pairs of method name part and argument. When a method has
no arguments, it has a single name part. The first method invocation in the
example, of the out method, is such an argumentless invocation.

The out method is invoked of the receiver stdio. Since this code in hello.t
is part of the unit hello, described by the unit file hello.u, which depends
on the tom unit, a compiler knows that stdio is the name of a class and the
out method invoked is a method of the stdio class.

The out method returns a stream object to which we print the constant
string "hello, world", which will subsequently appear on our screen. The
stream objects defined by the standard library return themselves from a print

36 CHAPTER 4. TOM: DESIGN

method, and consequently, the third method invocation invokes the nl method

of the same stream. The nl method emits a newline and flushes the stream.
As in many examples to follow, the meaning of those syntactic elements

that are not discussed with the example, like the return and the 0, is very

similar to the meaning of the same constructs in C (or the similarity suffices

for a correct interpretation of the example).

O

4.3.2 Basic types

TOM has two kinds of types: basic types and classes. The basic types are fully
predefined; they can not be modified, amended, or extended by the program-
mer. Values with a basic type are always passed by value and operations on
these values are statically bound. Contemporary CPUs are good at handling
the basic types. The basic types are listed in table 4.1.

Table 4.1: Basic types

byte 8 bit unsigned int
char 16 bit unsigned int
int 32 bit signed int
long 64 bit signed int
float single precision float
double double precision float
boolean | values: true and false
pointer | generic pointer
selector | method signature
void values: void

id type of self
dynamic | anything

The numeric types byte, int, long, float, and double have the obvious
meaning. The char type is a 16-bit unsigned integer, instead of the familiar
8 bits in most C implementations. The intended use of char is as character
values from the 16-bit Unicode character classification [44].

The pointer is equivalent to the C void pointer (i.e., void *) and is mostly
useful in glue code and in the implementation of classes that implement array-
style collections or otherwise need pointers that do not point to objects.

Each type has a default value. The default value is implicitly assigned to
new variables that are not explicitly assigned a value. Thus, the value of a
variable is never undefined. This decision does not prevent all bugs and errors
due to omitted initialization of a variable. It does however ensure repeatable
behaviour, which is a great aid in debugging.

4.3. LANGUAGE BASICS 37

The default value of the numeric types is 0 or 0.0. The default value of
a boolean is false. The default pointer is the invalid pointer (NULL in C);
the default selector is the invalid selector. Object references default to
the invalid reference, i.e., a reference to the invalid object. Any operation
on that object fails (any message to it raises a nil_receiver condition, see
section 4.6.1).

The invalid object reference is used frequently enough to have a name:
nil. The default values of the pointer and selector do not have a name.
However, the value of the following expression is the invalid pointer:

({pointer p; p;})

since the value of a compound ezxpression is the value of the last expression in
the compound.

The void type indicates the absence of a sensible value, similar to the type
with the same name in C. The void type has only one value, which is noted as
void. The id type is not really a type; it is the type of self. It is explained
in detail in section 4.6.2. The dynamic type also is not a real type. It can
occur as the formal argument type or return type of a method and it is used in
implementing methods of which the argument type or return type, especially
the number of elements of a tuple, can differ per invocation. An example of
its use is given in section 4.5.3; tuples are presented in section 4.3.3.

Discussion

The notion and choice of basic types is not new; they are used in many pro-
gramming languages. Notable exceptions are untyped languages like Lisp and
Smalltalk. The notion of a machine independent range for integer types is also
not new—Java uses the same strategy—but, surprisingly, not in widespread
use: C, C++, and Eiffel do not define the range of the basic integer.

However, leaving the range of numeric types unspecified leads to assump-
tions by the programmer about the deployment of the code that he is writing.
Even worse, these assumptions change over time. What starts as ‘for 32 bits,
use a long’ becomes ‘an int is 32 bits’, and on contemporary machines, a
long is becoming 64 bits wide.

Another possibly debatable point is how overflow of integer operations
should be handled. Clearly, the untyped languages are so slow that an extra
check for overflow does not cost a significant amount of time, while it adds
the advantage of a silent switch to bignums. However, this flexibility comes
at a high cost when the basic types and operations thereupon are meant to
be handled directly by a CPU, and the basic types are meant to be low-cost

38 CHAPTER 4. TOM: DESIGN

and fast. In addition, not all CPUs can trap on overflow of integer opera-
tions. Therefore, TOM does not deviate from the approach taken by a lot of
languages: arithmetic on integer values is modulo arithmetic.

Built-in operations

Operations on values of the basic types are expressed by operators. Operators
constitute the only operations that are possible on values of the basic types
and this also is the only use of operators. TOM employs the familiar C
operators, with some differences (this list is not exhaustive):

e In C the arguments to the short-circuit boolean operators && and | |
can be anything whereas they must be boolean in TOM.

e The result of the boolean-not operator (!) is boolean. The argument
can be of any type. The result is true if the value of the argument is
the default value of its type, false otherwise, which corresponds to its
common usage in C. Thus, the following expressions are true.

10.0 Inil 11 == !Iself

e The address-of and pointer dereference operators (& and unary *) have
no use in a language without explicit pointers, and therefore they do not
exist in TOM. TOM also does not employ the , (comma) as a sequence
operator.

e The bitwise logic operators &, |, and ~, bind stronger than the compari-
son operators, giving the expression a & b == 0 the expected meaning.

e The operator >>> performs a logic shift right and is mostly useful on
int and long arguments. The usual shift-right operator (>>) performs
an arithmetic shift right on signed values.

e In C the indexing operator [] is a shorthand for pointer-arithmetic-
and-dereference: a[b] is equal to *(a + b). In TOM the meaning of
the construct is different, the intention is the same, and it too can be
explained as a syntactic shorthand:

z = a[il;
b[j]l = y;

are translated to

4.3. LANGUAGE BASICS 39

z = [a at i];
[b set y at j1;

Note that the types of i, j, y, and z can be anything and a and b must
be objects, making the indexing of associative arrays elegantly simple:

my_shell = environment ["SHELL"];

4.3.3 Tuples

A tuple is a value that is made up of several components. For example,

(1, 3.1415, self)

is a tuple with as its type the tuple type
(int, float, id)

A tuple is an expression. Like every expression, it has a value and a type.
However, tuple types are not first-class types: a variable can not have a tuple
type as its type. (The reason for this is the same reason why expanded classes
are dismissed, see section 4.4.1.)

The main use of tuples is in passing values to and from methods (see sec-
tion 4.5). For example, in the following invocation

float i = ..., r = ..., a = atan2 (i, r);
the method atan?2 is invoked with one argument of type (float, float). It

returns a float value which is assigned to a.

The value of a tuple is computed by computing the value of each of its
elements, from left to right. The value of the tuple is the tuple of the values
thus computed.

In addition to being an expression, a tuple can also be used as the target
of an assignment. This is only possible when each of its elements can be used
as the target of an assignment. Obviously, simultaneous assignment behaves
as expected:

(a, b) = (b, a);

(The values of a and b are swapped.)

40 CHAPTER 4. TOM: DESIGN

4.4 Classes and objects

4.4.1 Classes

In addition to basic types, TOM employs classes, the types of objects. TOM
employs an object model similar to Smalltalk [15]. As shown in figure 4.2,
every object, instance and class objects alike, has a variable named isa being
a reference to the object’s class (isa is short for is a). Every object is an
instance of its class and each class object is the sole instance of its meta class.
To avoid infinite meta levels, all meta-class objects share one of them as a
single meta-meta-class object.

Every class object contains information regarding all instances of the class:
about the methods that they implement and the variables making up their
state. The meta-class object contains the same kind of information concerning
the class object. The meta-class object is implicitly defined by the inheritance
mechanism; its behaviour or state can not be explicitly defined or extended.

N, T
isa | isa !
meta-meta class C meta class
isa
C class
isa /
C instances

Figure 4.2: Instances, class objects, and meta class objects.

Every object definition actually defines two types: one denotes the instances
of the class and one denotes the class object of the class.

Expanded classes and parameterized types

In the object-oriented programming paradigm an important classification of
objects distinguishes objects that, when passed as an argument to a method
or as a return value from a method, are passed by wvalue, from objects that
are passed by reference. When an object is passed by reference, the data
making up its state remains at the same storage location and only a reference

4.4. CLASSES AND OBJECTS 41

to the object is passed. Objects that are passed by value have their whole
state passed: passing such an object as an argument in a method invocation
actually passes a copy of the object. Consequently, the amount of data that is
actually passed around is constant for pass by reference, whereas it depends
on the type when passed by value.

Example

In Eiffel, objects that are manipulated by value are exactly those objects that
are instances of an ezpanded class. Instances of normal, non-expanded, classes
reside on the heap and are manipulated by reference. Expanded values have
use beyond the archetypical Cartesian product types, like complex number
and point-in-plane. Eiffel does not have basic types not being objects, like
most other languages discussed in this dissertation have: in Eiffel, the basic
numeric types are simply expanded classes.

In C++, the choice of by-value or by-reference is not made by the designer
of a class like it is in Eiffel, but by the user of that class. This can undoubtingly
be explained by C++’s C heritage: in C, every value can have its address taken
and every pointer can be dereferenced. With good reasons: for example, to
have a function return more than one value, all but one of the values must
be passed by reference to the function. Therefore, creating a reference to (by
taking the address of) a by-value instance is a normal operation, blurring the
difference between expanded and non-expanded classes.

O

Instances of an expanded class are, by definition, passed by value. Program
code that uses such an instance must have exact knowledge about the size
of the state carried by that instance, much like a C compiler knows that the
32-bit general registers in the CPU can hold exactly one 32-bit int. This
means that extensibility of an expanded class is limited: to add extra state
requires recompilation of all client code and is therefore not possible. Fur-
thermore, expanded values are mostly used for reasons of execution speed and
all operations are therefore statically bound. Statically binding all operations
not only saves execution time; it also saves state that is necessary to discern
a class C' from its superclass A, which is needed to support dynamic binding.

TOM does not have expanded classes, i.e., values of user-defined types are
always manipulated by-reference. On the other hand, the significant speed
advantage of expanded values and statically bound operations thereupon can
not be ignored and TOM therefore employs expanded types with statically
bound operations for those values that contemporary CPUs know how to
handle, i.e., the numeric basic types presented in section 4.3.2.

An advantage of a fixed set of expanded types is the limited variation in the
amount of state that has to be manipulated by code. For example, to provide

42 CHAPTER 4. TOM: DESIGN

an array abstraction to store all possible types, it suffices to create one array
type for each of the basic types (with their varying storage requirements), and
exactly one for all types of which the user-manipulated values are reference
to object. Since the number of basic types is fixed and all user-defined types
in future code (future types) are handled by reference to object, all possible
requirements of future code can be handled with a fixed number of array
types. This means that parameterized types are not necessary, other than
for compile-time type checking. (A parameterized type can be regarded as
a template for a type, which can be made concrete, at compile time, by
supplying the type parameter, e.g., array of integers, array of objects.) Most
importantly, when a new class is defined, it can be stored immediately in an
array or any other kind of container defined by past code. It is not necessary
to recompile the array or to perform partial compilation to specialize it to
hold elements of the new type.

Garbage collection

A suitably high level of abstraction requires intimate knowledge about the
lifetime of objects to be unnecessary. When such knowledge is necessary, the
program code becomes fragile with respect to code changes which affect the
lifetimes of objects.

For example, in C, objects are structs that are allocated through malloc.
When the lifetime of such an object has passed, its memory must be deallo-
cated through free. Failure to do so correctly either leaks memory (the last
pointer to an object has vanished but free has not yet been invoked) or ac-
cesses memory that should not be accessed (free has been invoked before the
last pointer to the object has vanished). That this problem is real is shown
by the popularity of malloc debuggers.

Availability of debugging tools does not solve or remove the problem of
code requiring knowledge that violates encapsulation. Therefore, in TOM,
knowledge about the lifetime of objects is not necessary and storage space of
an object is reclaimed automatically after the object’s lifetime has passed.

4.4.2 Object state

TOM provides the following kinds of object state:

instance variable An instance variable defines a value that differs per in-
stance. Every instance variable defined or inherited by a class C' adds
to the state that is carried by instances of C.

The storage required for an instance variable is part of the instance’s
data (figure 1.1, page 3). Obviously, the number of storage locations
required for an instance variable varies with the number of instances
that exist in the running program.

4.4. CLASSES AND OBJECTS 43

class variable A class variable has a value that is the same for all instances
of that class. When a class A introduces a class variable cvar, then the
value of cvar will be identical for all instances of A. When a class C is
a subclass of A then cvar has a different value for C than it has for A.

The storage required for a class variable is part of the data of the class
object. The number of storage locations is therefore constant, except
when new plug-ins are loaded into the running program.

static class variable A static class variable has a value that is the same for
all instances of that class and its subclasses. Static class variables have
a use similar to global variables in C.

The storage required for a static class variable is similar to the storage
used by a global variable in C.

thread-local static class variable A thread-local static class variable (or
thread-local variable for short) has a value that differs per thread and
which, being a static class variable, has the same value for the declaring
class, its subclasses, and all their instances. In a single-threading envi-
ronment, a thread-local static class variable behaves like a static class
variable.

An archetypical example of a thread-local variable is the Thread object
representing the current thread.

A thread-local static class variable induces exactly one storage location
for every thread in the running program and therefore the number of
locations varies at run time with the number of threads.

At run time, every newly created storage location is set to the default value
of the type of which values are stored in the location.

Example

A simplified example to show some concrete syntax of how every Counter has
a value:

implementation class Counter end;

implementation instance Counter

{

int value;

}

/* Method definitions go here... */
end;

44 CHAPTER 4. TOM: DESIGN

4.4.3 Inheritance

When a class A inherits from a class C, it inherits an interface and an im-
plementation: instances of the subclass A can be manipulated by code that
expects to manipulate the superclass C'; the methods that the subclass uses
to respond to messages are those inherited from the superclass.

Because of the strong association between the class and the instance, in-
heritance needs only be written down once in the source, since a mandatory
repetition would be rather useless. For example:

implementation class Foo: State end;
implementation instance Foo end;

In this otherwise empty class definition, the class object Foo will be like
the State class object, and the Foo instances will be like State instances.
(Repeating the Foo: State at the instance is allowed but useless.)

Behavioural inheritance

The distinction between class objects and instances is useful but sometimes it
is undesirable. In such situations, both the class object and the instances must
conform to the same type. This mechanism is offered through behavioural
inheritance, for example:

implementation class Aap: instance (Noot) end;

implementation instance Aap: instance (Noot) end;

In this example, the class object of Aap explicitly inherits the instance of Noot,
as do the instances of Aap. With respect to the type Noot, the instances and
the class object of Aap are now identical, i.e., they both conform to the type
Noot.

The usefulness of behavioural inheritance lies in conformance to its type, the
operations offered by the type, and the methods that the instance implements.
The class of the behaviourally inherited instance is irrelevant.

The most visible use of behavioural inheritance is in the instance of the A11
standard class. It defines and declares various useful methods that apply to
all objects, both class objects and instances, for example the following method
which simply returns the receiving object:

4.4. CLASSES AND OBJECTS 45

id
self
{

return self;

}

Behavioural inheritance is akin to Objective-C protocols and Java interfaces.
Like those mechanisms, behavioural inheritance groups method declarations
and it introduces a type to which instances can conform. Unlike those mech-
anisms, it does not introduce a new mechanism and it introduces a type to
which also class objects can conform.

Multiple inheritance

TOM allows multiple inheritance. Multiple inheritance introduces the possi-
bility of repeated inheritance (see figure 4.1 on page 29). In TOM, the state
that a repeatedly inherited class introduces is present in the subclasses once,
as depicted in figure 4.1a.

Multiple inheritance also introduces the possibility of conflicting methods,
e.g., when two methods of the same signature are inherited from different
superclasses. TOM does not automatically resolve such conflicts; they must
be resolved by overriding the method in the inheriting class. The overriding
method can, for instance, select the desired overridden method from a specific
superclass (see section 4.5.4).

Important classes

Several classes can be recognized in any TOM program, much like the stan-
dard classes in other languages. For example, in Smalltalk, the Object class
resides at the root of the inheritance tree. TOM employs the following special
types c.q. classes:

Top The implicit supertype of all object types. This type is not very useful,
as it does not define any behaviour and can not be extended.

Any The implicit subtype of every object type: when used as the return type
of a method that can return any object, the caller never needs to cast
the value that is returned. For example, the following method is the
only object retrieval method of the ObjectArray class (which offers a
read-only array abstraction that stores object references) that actually
directly retrieves an object:

46 CHAPTER 4. TOM: DESIGN

Any
at int index;

A1l The conventional supertype of all object types. All classes should either
inherit from State (see below) or both class object and instances should
inherit from the instance (A11). The instance A1l defines all kinds of
behaviour that is useful for all objects, both class objects and instances.

Being the supertype of all objects, A11 can be used as the type of a
formal argument, allowing any object type to be passed as an actual
argument, without needing a cast. This is used, for example, by the only
method of the MutableObjectArray class (which offers a read-write
array abstraction that stores object references) that actually directly
modifies the array:

void
set A1l object
at int index;

State Every class must inherit from State for the instances to be allocatable.
State is also the class that defines the isa object variables and that
provides the designated way to create new instances, namely through
the alloc class method.

The instance (All) is the conventional supertype of all objects, a fact
that is visible in the definition of the State class:

implementation class State: instance (All)
end;
implementation instance State: instance (All)
end;
The usefulness of the Top and Any types is restricted to compile time:
they do not represent real objects that can be allocated or extended. The
pervasive presence of A11 enables the addition of behaviour to all objects, not

discriminating between instances and class objects, simply by extending the
A11 instance (extensions are explained in section 4.4.5). Similarly, behaviour

4.4. CLASSES AND OBJECTS 47

can be added to all classes or all instances, simply by extending the State
class or the State instance.

4.4.4 Encapsulation

Encapsulation denotes the hiding of implementation details. This applies to
object code as much as to source code. An object’s state is a prime example of
an implementation detail. When code directly accesses an object’s variables,
it becomes fragile with respect to changes to those variables. Therefore, TOM
allows direct access to the state of an object only to the object itself. When
the object is a class object, direct access is also granted to its instances.

As a result, access to the state of object other than self is never direct,
neither in source code, nor in object code. This implies that to access some
object’s state, it must provide methods to do so. To prevent the tedious task
of creating many little methods to access instance variables, like

return foo;

}

the qualifier public exists. It has the effect of defining such an accessor
method. Thus, the following declaration of the instance variable foo

public int foo;

grants access to the object variable foo through a method named foo, which
can be used thus:

int f = [x fool;

Similarly, the qualifier mutable, when applied to the object variable foo,
defines the following modifier method:

void
set_foo int f

{

foo = f;

}

and the object variable foo of an object x can be assigned thus:

[x set_foo 42];

48 CHAPTER 4. TOM: DESIGN

Discussion

Object-oriented programming languages like C++ and Objective-C employ
the qualifiers public, private and protected. An instance variable that is
public can be read and written directly by methods belonging to any instance
of any class, instead of only the instance to which the variable belongs. When
an instance variable is protected, it can be directly manipulated by methods
of the declaring class and subclasses; when it is private, only methods of the
declaring class can access it.

Obviously, TOM gives a rather different meaning to the public qualifier,
though the intention is the same—enable access from other objects. Further-
more, access being protected is natural for TOM and private is useless,
since, given the extensibility in TOM, one can always define an extension to
retrieve or modify a private variable.

4.4.5 FExtensions

A class is defined by its main definition and its extensions. The main definition
is often referred to as the main extension. All extensions, apart from the
main extension, have a name that allows the extensions of the same class to
be distinguished; they are collectively known as the named extensions of the
class.

As an example, adding a method to a class A can be done simply by defining
the method in an extension:

implementation class A extension Foo end;
implementation instance A extension Foo

int
age
{

return 5;

}

end;

In this example, the extension Foo of A defines a method ‘int age’. If this
method is already defined for A, then this new definition overrides the previous
one.

A method definition in a named extension always overrides a method with
the same signature in the main extension. Similarly, an extension that is
loaded at run time has precedence over the extensions that were present before

4.4. CLASSES AND OBJECTS 49

the extension was loaded. Extensions that are not ordered by different load
times, are ordered according to the dependencies between their containing
units, such that an extension by past code can be overridden by future code.

Apart from adding and replacing methods, an extension can also add vari-
ables and superclasses. In this respect, all extensions, named or not, are
equal.

Discussion

Named extensions can be added to a class at compile, link, and run time.
Though the real use of extensions is at link and run time, even at compile time
they offer an interesting advantage: they enable the definition of a class to not
be contained in a single source file. The class definition can be distributed over
multiple source files. Similar functionality is offered by the implementation
of extension hierarchies for C++, as discussed in section 3.5.2.

4.4.6 Class posing

TOM provides class posing, inspired by class posing in Objective-C (discussed
in section 3.7.2), with one important difference: posing is part of the language
instead of a trick at run time. Figure 4.3 shows the effect on the class hierarchy
of a class B posing as its superclass A. In addition to changing the superclass
of the other subclasses of A, any reference (sic) to A will actually reference
B, both in a type and in sending messages to the class object.

A A
/N /
B C D B
™\
C D
@) (b)

Figure 4.3: (a) B inherits A; (b) B poses as A.

The advantage of posing as A over extending A is simple: whereas an
extension can replace methods of the class it extends, a subclass can override
methods of the class it inherits (irrespective of whether the subclass poses as
the superclass or not). A method that has been replaced is no longer available,
whereas a method that is overridden can still be invoked, by messaging super
(see section 4.5.4).

Being part of the language instead of a run-time trick, knowledge about
classes being posed is available at compile time, which means that the types

50 CHAPTER 4. TOM: DESIGN

of objects and methods can be deduced correctly. This saves a lot of explicit
casting, as the example below shows.

Note that for the modification of the inheritance hierarchy by class posing,
it is irrelevant whether the other subclasses of A are defined in the same unit
(present code) or a different unit (past or future code).

Example

Suppose we take a closer look at the classes A and B of figure 4.3b (ignoring
the other subclasses for the moment). The source code of B could look like
what follows, indicating that B inherits from and poses as A, plus that B adds
method ‘int age’, that we assume is not implemented by A.

implementation class B: posing A end;
implementation instance B

int
age
{

return 5;

}

end;

Since posing is a mechanism that provides additional extensibility, allowing
the superclass A to be adjusted, A will usually be defined in past code, i.e.,
in a different unit than the unit containing B. While compiling the unit
containing A, the compiler will not have knowledge of B, and many a method
will return an A. While compiling the unit containing B, the compiler knows
about B posing as A and it will correctly type and accept an invocation of
the age method of an instance of A, even though A itself does not provide
that method:

A a = [foo nezxt.al;
int i = [a agel;

Had the fact that B poses as A not been known, then the invocation of
age would not have been possible, since the type of a is A, and A does not
provide in implementation of a method ‘int age’. Instead, a cast would have
been needed to convert the type of object a to B, which does provide an
implementation of the requested method:

int i = [B (a) agel;

4.5. METHODS 51

4.5 Methods

4.5.1 Method definition

Methods are the unit of behaviour. A method is defined by its name, the
argument and return types, and its body. The TOM method name syntax
resembles that of Objective-Cand Smalltalk. Either a method has no argu-
ments and a simple name or it has one or more arguments, each preceded
by a method name part. Every argument has a type and a name. Table 4.2
shows a few example method declarations.

Table 4.2: Examples of method declarations.

‘ declaration ‘ meaning

double pi is an argumentless
pi; method that returns a double.

int main accepts an Array argument
main Array args; named args and returns an int.

(int, int) divmod by is a method with two
divmod int a arguments a and b of type int;

by int b; it returns a tuple of two ints.

The value that is returned from a method can be a tuple and is therefore
not restricted to be a single value of a particular type as is common in many
programming languages. Also, returning multiple values is not different from
returning a single value, which it is in Common Lisp [40].

Tuples have more uses than as a return type. To avoid the excess method
name parts that often occur in Objective-C and Smalltalk, an argument can
also be a tuple:

(int, int)
divmod (int, int) (a, b)
{

return (a / b, a % b);

}

A method belongs to particular objects, either the instances of a class or the
class’ class object. A method is invoked as a result of sending a message
to such an object. The receiver and selector of the message are available
to the method body as the implicit arguments id self and selector cmd
respectively.

52 CHAPTER 4. TOM: DESIGN

Returning from a method

This section explains how the return value of a method can be set. It serves
as an illustration of the design of TOM. This aspect of the language does not
influence extensibility.

A method body is a compound expression (enclosed in braces, asin { ... }).
The value of that compound expression is irrelevant. To return a certain value,
e.g., 42, from a method that returns an int, the following suffices:

return 42;

Apart from setting the value that will be returned to 42, return has the side
effect of terminating execution of the method. Since that side-effect is not
always desirable, TOM offers a return-value assignment, the unary =, as in

= 42;

which does not exhibit the side effect of terminating the method. This is
useful in situations where the return value is known before all resources are
released, locks unlocked, &c. For example, instead of

int v = [my_resource valuel;
[my_lock wunlock];
return v;

one can use

= [my_resource valuel;
[my_lock unlock];

and more exciting variations thereof.

A third mechanism of setting the return value involves named return val-
ues. In the method heading, these names are defined by a tuple of identifiers
following the return type; a single return value can be named by a singleton
tuple. Each identifier in the named return values tuple either names an ar-
gument or is the name of a local variable that is implicitly declared with the
indicated return type. For example:

(int, int) (quotient, remainder)
divmod (int, int) (a, b)

{
quotient = a / b;
remainder = a % b;

}

4.5. METHODS 53

In addition, when return is used without any arguments, execution of the
method is finished and the return value is not affected.

The real use of named return values (and their reason for being) is in
method conditions, which are discussed in section 4.8.2.

4.5.2 Method invocation

As explained in chapter 1, the conceptual model underlying a method invo-
cation is that of sending a message. A message has a receiver and it carries
a selector plus any arguments that are needed. It is up to the receiver of the
message to properly respond. In terms of code, it is the class of the receiv-
ing object that determines which code will be executed in response to the
message.

The scheme described here is known as single dispatch: only the class of
the receiver determines which method will be invoked. A language like Cecil
employs multi dispatch: a message-send does not have a receiver per se: the
method to be invoked depends on the classes of all object arguments.

Example

As an example of multi dispatch, consider a Circle and Rectangle that can
draw themselves on a Display (e.g., draw a certain shape on a screen) and, in
addition, the Rectangle can do smart things on a ParticularDisplay (and
the ParticularDisplay is a subclass of Display). This is expressed by the
following methods (this example code is not valid in a particular language):

void draw (Circle, Display);
void draw (Rectangle, Display);

void draw (Rectangle, ParticularDisplay);

Thus, to draw a Circle, the first method will be invoked, irrespective of
whether it must draw on a mere Display or on a ParticularDisplay. On
the other hand, when drawing a Rectangle, the method to be invoked will
depend on whether the Rectangle will draw on a Display (second method)
or a ParticularDisplay (third method).

O

An important disadvantage of multi-dispatch method binding is that code
for an invocation actually inspects the classes of the objects involved, thus
making the code fragile with respect to changes in the classes of the objects
involved or in the available methods. A conceptual disadvantage of inspecting
the actual class of the arguments is that the distinction between interface and
implementation of the objects becomes blurred.

54 CHAPTER 4. TOM: DESIGN

The fragility of multi-dispatch method binding is unsuited for run-time ex-
tensibility. Therefore, TOM employs single-dispatch dynamic method bind-
ing.

Example

The dispatch flexibility that is offered by multi dispatch can also be obtained
when using single dispatch. As an example, we can rephrase the Rectangle
drawing example in TOM, while safely ignoring the Circle since the shape
(either Circle or Rectangle) is the receiver of the draw message. The draw
method of the Rectangle can tell the argument Display what to do:

// in Rectangle:
void
draw Display d

{

[d drawRectangle self];

}

and the Display and ParticularDisplay reply as follows:

// in Display:
void
drawRectangle Rectangle rect

{

[rect drawOnDisplay self];

}

// in ParticularDisplay:
void
drawRectangle Rectangle rect

{

[rect drawOnParticularDisplay self];

}

with the obvious implementation by Rectangle of the methods drawOnDis-
play and drawOnParticularDisplay.

The advantage of this setup when compared with multi dispatch is the ex-
tensibility: adding a new kind of Display does not invalidate any invocation
of the draw method that has already been compiled. This is, of course, an
important aspect when using plug-ins, and a prerequisite for run-time exten-
sibility.

O

4.5. METHODS 55

4.5.3 Method overloading

Methods are distinguished by their signature: when two methods differ in
name, return type, or type of an argument, they are considered to be different
methods. This is called method overloading: the method name is used for
multiple methods. For example, the following method declarations all denote
different methods.

void
foo;

int
foo;

id
foo int bar;

There is, however, one exception: methods that only differ in the type of
an object argument or return value are considered equal. If methods were
discerned on object types, it would offer not much more than implicit addi-
tional parts in a method name. If methods were discerned on object class, we
would arrive at multi dispatch, which was already discussed and dismissed in
section 4.5.2.

Ambiguities in method invocations are resolved at compile time through a
few simple rules. As an example of such a rule, an actual argument type of
int matches a formal argument type of long better than it matches a float.
True ambiguities are reported as an error. Since overloading is a compile time
issue, method-overloading ambiguities do not exist at run time.

Discussion

Method overloading eases reuse. When past code contains, for example, a
method with the signature ‘void display’, then it can not claim exclusive use
of the word display as a method name. Overloading enables using that name
again in an extension, for example in a method ‘Display display’ (using the
word display as a noun instead of a verb). However, method overloading
obviously does not solve the general problem of clashing method names when
using past code from multiple sources.

Method overloading should be used sparingly, since overzealous application
easily leads to a strong reduction of code readability. On the other hand,
however, there are situations where it greatly enhances readability, as the
example below shows.

56 CHAPTER 4. TOM: DESIGN

Example

The OutputStream class in the tom standard library unit provides several
methods to print various types of values to the stream. These methods trans-
late the value into a sequence of bytes readable by humans; these bytes are
subsequently written to the stream. An attempt to avoid overloading, thus
explicitly mentioning the argument types in the method name, could result
in the following code:

[out printByte ’H’];

[out printDouble 1.234d56];
[out printLong -1L1];

[out printObject nil];

This is not only rather ugly, but also requires a change of the method name
when the type of the value is changed. In addition, one must know the exact
type of an expression when invoking the method, which is unfortunate for
such a frequently used action as printing.

In reality, the OutputStream class overloads its print methods, which are
all called print. They return self, thus enabling invocation stacking, as in:

[[out print "The value of pi resembles "] print 3.14];
The most useful of the print methods accepts any argument:
id
print dynamic args;

Since the formal argument args has the type dynamic, the type of an actual
argument can be anything, most notably a tuple, as this example shows:

[out print ("The value of e resembles ", 2.71)];

In the invocation of a method with a dynamic argument, the selector that is
passed in the message-send will carry the actual type of the argument. As an
example of constant selectors, the selector that corresponds to the above ex-
ample is, in TOM syntax (a selector constant denotes a method signature and
resembles a method declaration without mentioning the argument names):

selector (OutputStream print (String, float))

Since methods are not discerned on the exact type of object arguments, the
following constant denotes the same selector:

selector (A1l print (Any, float))

4.5. METHODS o7

Obviously, the ‘print dynamic’ method performs an invocation of the proper
print method for each of the values in the tuple that is passed as an argument.
In fact, the overloading-resolution rules of a TOM compiler force an invocation
like

[out print 1.6e-19]

to invoke the method ‘print float’ and not ‘print dynamic’.
O

4.5.4 Messaging super

A subclass can override a method that it inherits from a superclass. When the
corresponding message is sent to an instance of the superclass, the method
invoked will be different from the method invoked when the message is sent
to an instance of the subclass. From within the overriding method (in the
subclass), the overridden method (in the superclass) can still be invoked by
sending a message to self while acting to be an instance of the superclass.
This mechanism is provided by messaging super.

The following example is a method defined for instances of Subclass, mak-
ing them always return twice the age that would have been returned without
this method:

// in Subclass:
int
age
{
= 2 x [super agel;

}

Since a class can have multiple superclasses, a message to super can be
ambiguous. Such an ambiguity can be removed by explicitly indicating which
superclass is to deliver the desired response, for example:

// in Subclass:
int

age
{

= 2 * [super (Superclass) agel;

}

Ambiguities when referencing super are only observed at compile time; at
run time, the message to super is directed to a certain direct superclass, and
ambiguities with respect to which particular superclass is to respond do not
exist and can not be introduced by dynamic loading. Of course, messages to

58 CHAPTER 4. TOM: DESIGN

super are dynamically bound just like normal method invocations. Further-
more, a message to super is not restricted to be an invocation of a method
that is overridden by the current method, though such use is the normal use.
For the invocation of other methods, self as the receiver is more suitable
and, more importantly, open to implementation by subclasses.

4.6 Miscellanea

This section groups the discussion of a few unrelated language features, which
are relevant to the issue of extensibility.

4.6.1 Conditions

A condition flags an unusual circumstance. A condition is an object that
can be told to signal itself; this triggers the condition-signaling mechanism:
the condition is offered to every condition handler that has a priori indicated
interest in that particular kind of condition. A condition handler is an ex-
pression in a method; it has a body and is active during the evaluation of its
body.

A condition handler is an expression that returns an object. When invoked,
it can take one of the following actions:

1. Return the condition object. The signaling mechanism will continue to
search for matching handlers.

2. Return an object, which will subsequently be returned from the signal
method invocation activating the condition-signaling mechanism. This
action terminates the signaling mechanism.

3. Perform a non-local return to the method invocation containing the
handler or its callers (direct or ancestral). This terminates the signaling
mechanism.

A condition can be told to raise instead of signal, in which case the signaling
mechanism will only stop on a non-local return. A condition is usually raised
by code that can not usefully continue execution.

Discussion

Conditions in TOM serve the same purpose as exceptions in C++ and Java [41,
17], and conditions in Common Lisp [40]. They are not as baroque as condi-
tions in Common Lisp, yet fix a problem of exceptions (see below) big enough
to justify the name conditions.

4.6. MISCELLANEA 59

An exception in C++ and Java is thrown, to be caught by handlers. When
a matching handler is found, it is executed, but only after the stack has been
unwound to the context of the handler. This compares roughly with TOM
conditions that would only be raised and never signaled.

In situations where continuing execution after signaling a condition makes
sense, exceptions are not an adequate tool to indicate problems, since after
an exception is thrown, there is nothing to return to. Unfortunately, these
situations are common, for instance every method that returns an object:
upon failure to create the object, it can ask a handler what to do next and
the handler can suggest a replacement object, for instance nil.

Java introduces another problem for its exceptions. Java discerns checked
and unchecked exceptions. Each checked exception that can be thrown dur-
ing execution of a particular method must be declared as such in the throw
clause of that method, which is part of its declaration. If a method is imple-
mented that has been declared elsewhere, for instance in a superclass, then
the exceptions that can be thrown must not differ. This forces local exception
handling upon the method, which is contrary to the objective of exceptions:
they enable non-local error handling.

Checked exceptions must be mentioned in a method’s throw clause, a fact
which is checked by a compiler. When thus enforced they restrict extensi-
bility and negatively influence the validity of source code for no good rea-
son. That checked exceptions are unwieldy is implicitly acknowledged by the
creators of Java: they invented unchecked exceptions to flag exceptional cir-
cumstances that are triggered by the program but not actively thrown by the
program code, for instance OutOfMemoryError and NullPointerException
exceptions.

4.6.2 The id type

The id type has been presented in section 4.3.2 on basic types, though it
is not really a distinct type. The id type denotes the current type. In the
context of a method definition, the current type is the formal type of self,
i.e., the class or instance containing the method definition. However, in the
context of a method invocation, id denotes the actual type of the receiver of
the message, as the following example explains.

Example

Use of the id type is best illustrated by the object allocation mechanism used
in TOM. A new object is created by invoking the alloc method of its class,
followed by an invocation of the object’s initializer. The de-facto initializer
has no arguments and is defined by State thus:

60 CHAPTER 4. TOM: DESIGN

id
it
{
= self;

}

So, this default initialization method does nothing.

Within the method body of this init method, which is defined by State,
it does not matter whether the return type is State or id, since the two are
equal. Things are different for an invocation of this method, and the types
change when taking subclasses into account. Suppose we have a class Shell
which is a subclass of State:

Shell s2, s1 = ...
s2 = [sl 4nit];

The init method invoked is inherited from State. Consider this example if the
init method would return State instead of id. In that case, the assignment
to s2 would not be possible—without a type cast—because of the types being
incompatible. Luckily, the type returned by init is id, being the type of the
receiver, the type of s1 in this case. The assignment is thus correct.

By definition, new objects are allocated through the alloc method defined
by the State class. This method, when invoked, returns a newly allocated
instance of the class to which the alloc method was sent. This alloc method
provides the only way to create new instances. Thus, if instances of a class
will be created, the class must be a subclass of State.

The alloc class method is declared thus:

instance (id)
alloc;

The id type changes with the receiver. With the allocation of instances, the
type of the object returned is the type of the instances of the class that was the
receiver. Hence the type of the value returned by alloc is instance (id),
i.e., an instance of the receiving class.

Object allocation and initialization methods are mostly invoked in one
breath, thus:

Shell sh = [[Shell alloc] init];

Having to type two method invocations to create a new instance can become
cumbersome. Therefore, a class can provide a single method to perform both
allocation and initialization. As an example, a Sea class of objects that hold
one or more Shell objects could provide the following allocator class method:

4.7. RUN-TIME FLEXIBILITY 61

instance (id)
withShell Shell sh
{

}

In addition to a default initializer, State also provides a corresponding
default allocator:

= [[self alloc] initWithShell sh];

instance (id)
new
{

}

As the following code shows, using the allocators makes the code shorter
without reducing readability:

= [[self alloc] initl;

Sea one = [[Sea alloc] initWithShell [[Shell alloc] init]];
Sea two = [Sea withShell [Shell newl];

|

Example

Shifting an object type from a class to its instances can of course also be
reversed, as used by State, which defines the following instance variable:

class (id) isa;

Thus, isa is a reference to the class object of the current object. While
defined only once, in the definition of State, its type class (id) is correct
in all subclasses.

O

4.7 Run-time flexibility

The extensibility features of TOM are discussed in the preceding sections.
Those features are provided by the language and maintained at run time,
aided by the run-time environment. Some additional features of that environ-
ment can not be left unmentioned, for they are instrumental in the run-time
flexibility that TOM provides.

62 CHAPTER 4. TOM: DESIGN

4.7.1 Computed method invocation

In the example message-sends in preceding sections, the selector is always
fixed by code. The ability to parameterize the selector of a message is pro-
vided by the perform with method (and related methods), defined by the A1l
instance:

extern dynamic
perform selector sel
with dynamic arguments;

When invoked, perform with will send a message to the receiver of the per-
form with method, with the selector sel and as arguments what is passed to
the arguments. This is a run-time exercise: any typing error in the arguments
or return type can not, in general, be caught at compile time, but is flagged
at run time.

As an example of its use, the effect of the following method invocations is
the same:

int al = [b multiply 6 by 9];

int a2 = [b perform selector (int multiply int by int)
with (6, 9)]1;

The difference is that in the perform with case, the selector is an argument.
It could just as well have been selector (int divide int by int).

4.7.2 Postponed method invocation

The perform with method moves the boundary between code and data, by
retrieving the selector of the message to be sent from data instead of the
usual code. This boundary can be moved further. Obviously, moving the
boundary defers to run time decisions that otherwise a compiler would make,
thus negatively influencing execution time. Nevertheless, the flexibility thus
gained is considerable.

An Invocation is an object that contains a description of a method invo-
cation: the selector, arguments, and receiver. To continue the multiplication
example from the previous section, the following is yet another way of asking
an object b to multiply 6 by 9:

int a = [[[Invocation of selector (int multiply int by int)
to: b
with (6, 9]
result]
components] ;

4.7. RUN-TIME FLEXIBILITY 63

In this case, an Invocation object is constructed and asked for its result,
which causes the invocation to fire first, actually performing the method invo-
cation. The result method returns an InvocationResult object, from which
the actual values that were returned from the invocation can be retrieved
through the dynamic-typed components method.

An interesting feature of the Invocation objects is their ability to be cur-
ried, i.e., already carry the values for some of the arguments, but not all.
The remaining arguments can be provided later, either explicitly or through
a method invocation that provides the missing arguments and method name
parts, as the following example shows.

Example

Consider the following multiply-accumulate method of some object:

int
addAfter int d
multiply int a
by int ¢

=ax*x c + d;

Furthermore, suppose that some object b implements this method, and that
we have the following invocation inv:

Invocation inv
= [Invocation for selector (int addAfter int
multiply int by int)
to: b with -12] ;

The invocation inv is not complete: the selector dictates 3 integer arguments,
whereas only one is provided. Any attempt to fire the invocation or to ask for
its result will fail. However, the invocation can be completed by sending it a
message with the missing arguments and corresponding method name parts.
To complete the example, the value of a after the following initialization

int a = [inv multiply 6 by 9];

is 42.
|

64 CHAPTER 4. TOM: DESIGN
4.7.3 Forwarding

TOM binds all methods dynamically. In addition, it passes the selector of
the message as the implicit argument cmd to every method invocation. This
enables a mechanism to handle the case when an object receives a message it
does not understand. This mechanism is called forwarding.

When a message is forwarded, the receiver is asked for an object to which
to forward the message, using the following method that every object should
inherit from the instance A1l :

A1l
forwardDelegate selector sel

{

= self

}

When the object returned by forwardDelegate is different from self, the
message is forwarded to that object. Otherwise, the message is packed into
an Invocation object and passed to the receiver using the following method,
also inherited by every object from the instance A11:

InvocationResult
forwardInvocation Invocation invocation;

The default implementation of this method raises a condition.

The forwarding mechanism provides a solid basis for an implementation
within the language of what Java calls Remote Method Invocation and what
is known as Distributed Objects in Objective-C.

4.7.4 Introspection

TOM provides run-time introspection: every unit (available as an instance of
the Unit class) can be queried for its classes (the class objects) and extensions
(identified by instances of the Extension class). Each class can be asked for
its extensions, and each extension (like each class) for its methods, variables,
and superclasses. The value of an object variable can be read and set by
name. Methods defined by a particular extension can be invoked.

Introspection is a powerful flexibility mechanism, as it allows code to query
(and reason about) its building blocks.

4.8. COMPILE-TIME FEATURES 65

4.8 Compile-time features

Not everything in a language designed for extensibility and flexibility of code is
necessarily flexible or a run-time matter. Some compile-time features interact
with extensibility, warranting discussion in this and the following sections.

An important compile-time feature is the possibility to give names to con-
stants. This can be as elegant as a const int in C++ or as textual as a
#define in C.

TOM offers the const declaration, which is allowed anywhere where a vari-
able declaration is allowed, but which, given the nature of giving names to
numbers, usually is employed at the class level. The value of a const is a
constant expression, like for instance the definition of TRUE and FALSE in the
instance A11:

const TRUE = 0 == 0;
const FALSE = !TRUE;

Another compile-time issue is the typing of object variables. For a value
of one of the basic types, the type is not only important for the operations
that can be performed on that value, but also because it dictates the size of
the memory location needed to store the value. For a variable that references
an object, the storage size is independent of the type of object to which it
points. A notion of the type is only important for deducing which message
to send for a given method invocation.

All method invocations are dynamically bound and trigger the forwarding
mechanism when a method with the given signature is not implemented by the
receiver. As a result, strict typing at compile time is useless: many a program
can be written of which the validness can not be confirmed by static type
checking. The strict separation between the interface and implementation of
objects, that is maintained at run time, will catch any errors.

This attitude towards typing explains why TOM allows a subclass or exten-
sion to redeclare what was defined in a superclass or extension. For example,
when the following method exists:

// in some class:
A1l
theObject;

an extension or subclass can redeclare it thus:

// in some subclass:
redeclare Any
theObject;

66 CHAPTER 4. TOM: DESIGN

Under the method overloading rules (section 4.5.3), these declarations concern
the same method signature. Taking the meaning of the A11 and Any types into
account (section 4.4.3), the redeclaration changes the meaning of the method
from ‘some object is returned about which nothing special is known’ to ‘any
object is returned; if you know which one it is, you are probably right.’

Redeclaration is most often used for instance variables. For example, a
generic Parser object has an instance variable to reference the generic Lexer
object being used to lex the input. When the Parser is subclassed to obtain
a TOMParser, that parser will probably employ a TOMLexer, a fact that can
be expressed by a redeclaration.

4.8.1 Method-arguments default value

It is not uncommon for a method to have various parameters that influence its
operation. The parameters can be the state of an object or simply arguments
to the method. It is also not uncommon for some of the parameters to have
the same value in most of the invocations. For example, a method to retrieve a
numeric value from a String object may have arguments to indicate that the
number may or may not be preceded by a sign or that C-style base-modifying
prefixes (0x for hexadecimal and 0 for octal) should be considered. It will be
tedious to have to specify those arguments for every invocation.

One way around the boring arguments is to provide methods which lack
those arguments and which invoke the real method with the appropriate mix
of default and actual arguments. However, when doing this exhaustively for
every combination of default and actual arguments, the number of methods
to be provided quickly explodes. This leads to arbitrary omissions, which is
undesirable.

For these circumstances, TOM provides default argument values. For ex-
ample, the String number-retrieval method could be declared thus (the colon
in the method name parts with default argument values is conventional):

int
integerValue (int, int) (start, length)
allowSign: boolean signs = YES
allowCBases: boolean bases = YES;

and the following invocations would be possible (specifying -1 as the length
indicates the remainder of the string):

al = [s integerValue (0, -1)1;
a2 [s integerValue (10, -1) allowCBases: NOJ;
a3 = [s integerValue (19, 67) allowSign: YES allowCBases: YES];

4.8. COMPILE-TIME FEATURES 67

When a subclass overrides a method that provides default argument values,
those defaults remain in effect if the subclass does not specify default values.

Discussion

The default argument values are used at compile-time, to be precise: while the
invocations are compiled. At run time they are no longer visible. When com-
pared with a mechanism like adding extra methods which substitute default
values, it has the disadvantage that the default values can not be changed by
an extension. However, such modifications are a bad idea: the programmer
writing a method invocation knows the values of any unspecified arguments
and decides not to specify them because their values suit. He would be sur-
prised when those defaults change. And his code would start to fail.

The first argument to a method can not be optional. This prevents many
ambiguities that otherwise would be possible and surprising.

4.8.2 Method conditions

TOM provides method preconditions and method postconditions, inspired
by Eiffel [29]. A method precondition is a boolean expression that can be
evaluated upon every entry to the method and which is supposed to never
fail. If the condition evaluates to FALSE, the program is deemed incorrect.
Similarly, a method postcondition is evaluated just before returning from the
method.

As an example, the following declaration in an imaginary array class exem-
plifies a precondition that requires the index to be within bounds.

Any
at int index
pre
index >= 0 && index < [self length];

A precondition can be checked upon every entry to the method. When a
precondition fails, the following call is executed:

[self preconditionFailed cmd] ;

All objects inherit this method from the instance A11; the default implemen-
tation raises a condition, but this method can, of course, be overridden.

Method conditions also apply to methods that override the method con-
taining the condition. Thus, if a subclass or extension overrides a method,
the new method will also inherit the method conditions.

Method postconditions require two additional language mechanisms. One
is the ability to refer by name to the value that is returned by the method. An

68 CHAPTER 4. TOM: DESIGN

example is the following method by the A11 instance, which tests the receiver
being the other object (the eq method is the method equivalent of the equality
operator), and of which the postcondition suggests that the method should
not be overridden:

boolean (result)

eq A1l other
post

(self == other) == result
{

= self == other;

}

The second language feature made necessary by postconditions is the ability
to refer to a value that was computed upon entering the method. This is
provided by the unary old operator. As an example, consider the following
method from a (single threaded) semaphore unlock operation:

void
enableGC
pre
gc_inhibit > O
post
gc_inhibit == old gc_inhibit - 1
{
gc_inhibit -= 1;

}

Method conditions increase the code size and, when checked, can cost con-
siderable run time. A compiler is free to ignore method conditions and a
human can instruct it to do so. Method conditions should not contain side
effects.

Discussion

Method conditions in Eiffel are method-centric, as expressed by [29, page 341]:
“If you promise to call [my method] r with [its] pre[condition] satisfied then
I, in return, promise to deliver a final state in which [its] post[condition] is
satisfied.” Consider a method that overrides a method with precondition pre
and postcondition post, and declares a precondition pre_sub and post_sub.
From the method-centric point of view, polymorphism dictates that the over-
riding method can not demand more from client code but it is free to promise
more. Put differently, the effective precondition will be the weaker pre ||
sub_pre and effective postcondition the stronger post && sub_post.

4.9. MISSING FEATURES 69

In TOM, method conditions are deemed to be applicable not just to the
method but to the whole object. For example, a precondition must be able
to express “before this method is invoked, the receiver must have been prop-
erly initialized,” irrespective of any preconditions for the same method of the
superclass. Therefore, the rule of widening preconditions and narrowing post-
conditions is not enforced. Instead a precondition can narrow using pre &&
and a postcondition can widen using post ||. An additional advantage is
that inherited conditions can be fully overruled, thus aiding extensibility.

In addition to method conditions, Eiffel employs class invariants: boolean
conditions that must hold upon entry to or exit from a method that is in-
voked as the result of a message-send to an object different from self. The
availability of class invariants might explain the strict semantics of method
conditions. However, since class invariants are inherited by subclasses, they
reduce the freedom of subclasses. In addition, implementation of class invari-
ants requires consideration of the class of either the sender of the message (in
a method) or the receiver of the message (in a method invocation). This, too,
hampers extensibility.

4.9 Missing features

TOM is a young language. As such it lacks some features. Some of these
features are not yet defined but expected to be included in a future version
to TOM.

One of those missing features is a means for indicating that a certain
method, class, or variable is available for backwards compatibility only: TOM
misses the obsolete keyword as provided by Eiffel.

A facility to give different names to existing types is needed, as in
typedef int pid._t;

A typedef would be allowed everywhere where a class, instance, or local
variable declaration is allowed. The type name introduced by the typedef
would have similar scoping rules. Note that the type names introduced by
a typedef do not introduce new types, and hence would not affect method
overloading.

Another interesting change would be to allow the last method name part
to be argumentless irrespective of whether it is the single name part (already
allowed) or not (not yet allowed). This is especially interesting for curried
invocations, allowing them to be used for an argumentless message.

The feature missed most is probably the first to be added in the near
future: blocks. A block—the name is from Smalltalk; blocks are available in
many languages under many names—is a compound expression of which the

70 CHAPTER 4. TOM: DESIGN

evaluation can be postponed. A reference to it can be passed around, much
like one can now manipulate Invocation objects. The advantage of blocks
over Invocation objects is that an Invocation must invoke a method and
needs a receiver of a certain class, whereas a block is itself the receiver, and
the method is implicit.

4.10 Résumé

Extensibility in TOM is provided by the language. It is supported at compile
time and link time by the development tools and at run time by the run-time
environment. Additional flexibility is provided by the run-time environment,
aided by the language.

The requirement of run-time flexibility of code has introduced flexibility
in the organization of source code, at compile time. Since a class can be
extended, its complete definition need not be contained in a single file.

Chapter 5

TOM: Implementation

This chapter describes an implementation of the TOM programming lan-
guage, as developed by the author and designated the TOM reference imple-
mentation. In this chapter, the name TOM-1 refers to this implementation.
It includes a compiler and a run-time library.

Obviously, an important goal of TOM-1 is to provide an implementation of
the TOM programming language that can serve as a test bed for the extensi-
bility of TOM. As a result, flexibility of code is more important for the design
and implementation of TOM-1 than is the speed of compilation or execution
speed of the resulting code.

5.1 Source boundary

In TOM-1, the level of source availability (see section 3.3 on page 17) has
little influence. Present code (level 1) needs no explanation; with open source
(level 2) access, every feature offered by the language is available.

Closed source access (level 3) to a unit means that the unit file (.u) is avail-
able, and that for every TOM source file (.t) in the unit, an interface file (. j)
is available. The interface file usually contains everything the implementation
file contained at the time the interface was created, except for method bodies
and extern qualifications. Most notably, an interface file usually includes
the definition of constants, method argument default values, and method pre-
and postconditions. Closed source access to past code still implies that every
feature offered by the language is available.

Binary access (level 4 source access) means that no sources are available.
Luckily, some information can be retrieved from the binary, aided by run-
time introspection, in an attempt to alleviate the absence of source. This
is accomplished by retrieving the information that is already present in a
running program because it is necessary for providing run-time flexibility.

72 CHAPTER 5. TOM: IMPLEMENTATION

It is possible to write a plug-in which is loaded into the running binary that
has been produced by TOM-1, to retrieve the following information, for every
desired unit:

e the units upon which this unit depends;
e the names of all classes and extensions introduced by this unit;

e for every extension or class the superclasses introduced by that extension
or class;

e for every extension or class, the type and name of any object variables
that it introduces, including, for each class variable, whether it is static,
not static, or thread-local; and

e for every extension or class, the selector of each method that it defines.

This information, retrieved from a binary, strongly resembles the interface of
the original closed source, i.e., the contents of all . j files of the desired unit.
Most importantly, it contains enough information to allow the implementation
of extensions and subclasses.

Unfortunately, the interface thus retrieved excludes information on method-
arguments default values, any preconditions and postconditions that may
have been defined, and any constants that were defined. Put differently,
information about all compile-time features has been lost when retrieving
information from a binary.

5.2 Extensibility

TOM-1 does not provide the full extensibility defined by the TOM language.
These restrictions are imposed by the TOM-1 implementation; it is possible
to work on TOM-1 so as to remove these restrictions. They are:

e The addition of state through dynamic loading, through a named ex-
tension or class posing, must not affect live objects, that have been
allocated and not yet reclaimed by the garbage collector. Thus, if a
class has live instances, addition of instance variables is not supported.

e The same restriction applies to a class, being the sole instance of its
meta class. Unfortunately, class objects are preallocated by TOM-1
at compile time. As a result, the addition of non-static state is not
allowed at link or run time. Fortunately, non-static class variables are
not frequently used.

5.3. COMPILER 73

5.3 Compiler

The TOM-1 compiler, named TOMC, is a simple compiler that processes
source files one at a time. It emits a C source file (.c) for every TOM source
file (.t). This does not result in the fastest possible code but it keeps the
portability of TOM-1 high: porting TOM-1 to a new platform typically takes
a few hours, time which is mostly spent on the run-time environment and the
perform methods.

The C files generated by TOMC must be compiled by the GNU C com-
piler [38], for they depend on GNU CC-specific extensions to the C language.
This demand on the C compiler does not impose a severe restriction on the
portability of TOM, since GNU CC is available on every significant plat-
form.

This section discusses various design and implementation issues concerning
the TOM-1 compiler and its support of the TOM programming language.

5.3.1 Code annotations

TOM-1 provides three kinds of source code annotations. Each kind serves its
own particular purpose.

1. The normal comment is the C-style comment:

/* This is a normal comment, C-style. */

This C-style comment is pure comment: an annotation of program code,
to be read by the human reader. It does not have any meaning to any
tool, most notably a compiler.

2. The abnormal comment is the C++-style comment:

// This is an abnormal comment, C++-style.

It is abnormal in the sense that the TOMC compiler will issue a warning
for every occurrence of an abnormal comment. The intended use of
abnormal comments is for comments which discuss or indicate problem
situations: they can be considered an institutionalized version of the
informal ?7?7? and XXX strings in comments.

3. A generic annotation mechanism, using SGML-like tags [16], for exam-
ple:

74 CHAPTER 5. TOM: IMPLEMENTATION

<foo> This is an SGML-style code annotation. </foo>

<bar> This is one too. </bar>

SGML-style annotations are intended to be significant to tools. Most no-
tably, the TOMC compiler regards them as whitespace, except for <c¢>...</c>
(see below). Annotations currently in use are:

<copyright> ...</copyright> Every TOM source file in the TOM-1 distri-
bution starts with a copyright notice enclosed in these tags.

<c> ...</c> C glue code, see the next section (5.3.2).

<0> ...</0> Conventional TOM variant of the idiomatic C construction:

#if O
#endif

which skips the ‘...".

<doc> ...</doc> These documentation comments are extracted by the doc-
ument extraction tool tm (see section 6.7). They are used to document
classes, object variables, and methods.

5.3.2 Interfacing with C

For any programming language, it is important to be able to access function-
ality written in a different programming language. Such access is provided by
glue code. The designated way to interface TOM code with code in another
programming language, is to implement methods of TOM objects in the other
language. For this purpose, the C language is an obvious choice.

A TOM method is flagged as having an implementation in another language
by the extern qualifier:

extern double
atan? (double, double) (y, x);

Obviously, an extern method does not have a body in TOM code.

For methods employing the dynamic type, i.e., methods that accept or
return a variable number of values of any type, an external implementation
is mandatory, since the language does not yet define how to create or dissect

5.3. COMPILER 75

dynamic-typed values. For example, the ‘id print dynamic’ method, described
on page 56, is implemented externally only for that reason.

Though external implementations are mandatory for methods employing
the dynamic type, they otherwise have several disadvantages:

e For a method implementation in hand-written C, there is no compiler to
generate code for inherited method conditions, and therefore no checking
of such method conditions. This omission applies to all compiler fea-
tures: method-arguments default values are also not available to method
invocations that are written in C.

e The external method must be completely written in C; there is no mech-
anism to include TOM code.

e The notation of TOM method invocations in C can be pretty hefty.
The C language distinguishes, in function invocations, arguments of
which the formal type is defined from those with an undefined type.
In the latter case, a mechanism known as type promotion converts the
arguments before passing them to the called function. On 32-bit ar-
chitectures, this mechanism mostly affects float arguments, which are
promoted to double, being twice in size. Since TOM methods always
have known argument types, such type changes cause problems. These
can be remedied but require explicit typing of the method invocations.
For example, to invoke an argumentless method, the C type of the
method being invoked is:

tom_object (*) (tomobject, selector)

Even when macros are used to remedy this verbosity, this notation re-
mains elaborate.

TOM-1 provides an alternative to external methods: it is possible to in-
clude literal C code in TOM code. Obviously, this facility depends on the
TOM-1 compiler emitting C code, on the TOM-1 garbage collector being
conservative, &c. However it makes writing glue code so much easier, that
the advantages outweigh the disadvantages, for now.

As an example, the following class is glue code for the atan2 function
provided by the C math library.

<c>
#include <math.h>
</c>

76 CHAPTER 5. TOM: IMPLEMENTATION

implementation class Math

double (result)
atan?2 (double, double) (b, a)

{

<c>
result = atan2 (b, a);
</c>

}

end;

implementation instance Math end;

Note how the value that is returned from the method is declared to have the
name result, and that it can be assigned from C code.

With this definition, TOM code can invoke the atan2 function of the C
library, simply by invoking this atan?2 method.

5.4 Run-time environment

This section discusses some implementation issues concerning the run-time
environment that are directly or indirectly relevant for extensibility or the
implementation of the language.

5.4.1 Method binding

As explained in section 4.1.4, any association in code between an operation
and an implementation, increases code fragility and negatively influences ex-
tensibility. Therefore, in TOM-1 all method invocations are dynamically
bound.

Numerous approaches are available for the efficient implementation of dy-
namic method binding, see for example [5] and [6]. TOM-1 method binding
uses a mechanism that is also used by GNU Objective-C , described in [42].

The single dispatch method binding problem can be described as a mapping

class x selector — method (5.1)

where the class is the class of the receiver of the message. (The class of a
class object is the meta class.)

An efficient implementation of this mapping is made less than trivial be-
cause dynamic loading can introduce additional selectors, new or already

5.4. RUN-TIME ENVIRONMENT 7

known. As an example of a possible approach, NeXT’s implementation of
Objective-C [36] ensures that every selector is a unique string, aided by the
linker and the dynamic linker. However, depending on linker features is not
portable.

The solution used by TOM-1 accepts that every selector can have one or
more descriptors. The selector administration, which starts at link time or run
time, and which is continued at run time when plug-ins are loaded, associates
with every selector a unique selector identity. The identity is stored in every
descriptor for that selector. This way, every selector in a running program is
identified by an integer number that is unique for the selector. These identities
reside in a closed naming [0..n).

When a program has n distinct selectors and loading a plug-in introduces

m selector descriptors, then for the new n, dubbed n', the following equation
holds:

n<n <n+m (5.2)

The integer selector names can be used as an index into a two-level array as
depicted in figure 5.1. The first level index selects a bucket; at the second level,
a entry in the bucket points at the method. This scheme allows buckets to
be shared between a class and its subclasses, saving considerably in memory
usage, though at the expense of an extra indirection for each lookup.

=
== e

il

Figure 5.1: Method dispatch tables (of classes A and C) using a 2-level array.

Using this scheme, a method invocation is as expensive as a few indirections,
which cache well for frequent use, and a computed function call:

78 CHAPTER 5. TOM: IMPLEMENTATION

tom_object receiver = ...;
tom bucket b = receiver->isa->dispatch->buckets[sel / NJ;
void (*) () method = b->methods[sel % NI;

with N being the size of the buckets. A smaller N increases the possibility for
bucket sharing but also increases the overhead. In the current implementa-
tion, N is 16.

The run-time overhead of this method binding scheme depends on the kind
of application and the way the overhead is measured. A rough estimate, valid
for most applications, dictates that dynamic method binding of all method
invocations induces approximately 10% CPU time overhead.

Concluding, the TOM-1 method binding mechanism is efficient, portable,
and easy to use from hand-written C code.

5.4.2 State binding

The state carried by each object originates from its class definition, any ex-
tensions defined for it, and the state inherited from its superclasses. Multiple
extensions of a class can define additional state of an object, and state can
be inherited from multiple superclasses. As a result, object variables do not
necessarily reside at a constant offset from the start of an object.

The offset from any object variable to another object variable defined in the
same extension (main or named) is constant, irrespective of the class in which
the variable resides. In addition, we have observed that for a reasonably-sized
program, the number of state-defining extensions is approximately equal to
the number of classes. This can be explained from the fact that classes tend
to introduce, with respect to superclasses, additional instance variables; non-
static class variables are not used; and extensions usually only define methods.

Given this information and the requirement of run-time extensibility, the
following scheme is used to access object variables: every extension that intro-
duces additional object variables is assigned a number, the extension identity.
Every class has an extension offset table and when a method needs access to a
particular object variable, it uses the table to retrieve the offset from self to
the start of the first variable in the extension containing that object variable.
Since all these ingredients are constant, this computation needs to be done
once per method and extension being accessed.

The memory overhead of this scheme with respect to, for instance, the ob-
ject layout generated by C++ compilers, is difficult to measure, accounting
for only a few instructions and some local variables in methods accessing ob-
ject variables. State binding is done on a per-method basis, incurring little
overhead for individual accesses, for example within a loop. Furthermore,

5.4. RUN-TIME ENVIRONMENT 79

it does have the advantage of a constant, small, memory overhead per ob-
ject. Compared to C++, the TOM-1 overhead is only larger than that of a
C++ object without virtual member functions, without a virtual superclass
carrying state, and without a repeatedly-inherited superclass carrying state.

5.4.3 Library options

Past code supports future code and present code depends on past code. All
code depends on its clients to be properly initialized: in this respect, past
code depends on future code. However, this dependency should not imply
that every program must start with initialization of the libraries on which it
depends. Such musts are to be avoided: the smallest valid program should be
as empty as possible, even if many libraries are used.

Initialization needs parameterization. If past code is initialized automati-
cally (i.e., beyond control of the future code), the initialization should still be
parameterizable.

For instance, the C library is initialized automatically before the main func-
tion is invoked. This is obvious, since it is the C library that actually calls
main. The initialization of the C library is implicit and not parameterized.

The X library, which provides the connectivity from a program to an X win-
dow server, is written in C. Every X program is required to invoke a particular
function to let the X library initialize itself. As part of this initialization, the
command line, passed as an argument to the invocation, is scrutinized and
those options that the X library understands are removed. The initialization
of the X library is explicit and parameterized by command line options.

In TOM-1, initialization of code other than the program code is imple-
mented through load methods (see section 5.4.4). Parameterization thereof
is handled by library options. Library options are command line arguments
that start with a colon, ‘:’, allowing them to be discerned from the normal
options that, at least on UNIX, start with a ‘-=’. The syntactic distinction
enables unknown library options to be skipped by program code, allowing ‘:’-

options to be passed to code that is dynamically loaded.

Example

The garbage collector in TOM-1 has several parameters which influence a
program’s memory usage and the efficiency thereof. These parameters can
be given a value different from their default value using library options (sec-
tion 5.4.5).

Some other interesting library options are:

80 CHAPTER 5. TOM: IMPLEMENTATION

:cc-pre Instruct method preconditions to be checked. The code to check
method preconditions is usually included in the compiler output, but
they are not actually checked, unless :cc-pre is provided.

:cc-post Like :cc-pre, but applying to the method postconditions.

:extend=objectfile Dynamically load the code in the file named objectfile be-
fore invoking the main method.
O

5.4.4 load methods

A load method is a special method: every load method in a class or extension,
is invoked automatically when it is loaded. All load methods in a program and
the libraries upon which it depends are invoked when the program is started,
before the main method is invoked. The load methods allow initialization
of code without needing to depend on future code. Furthermore, they are
instrumental in the implementation of library options.

void
load MutableArray args;

The arguments to the program are available as the args, ready to be modified:
the load method can remove from the args array every argument that it
recognizes and handles. The arguments that are removed are not passed to
the main method.

The load methods are partially ordered: unordered within a unit, the load
methods of a particular unit are invoked after the load methods in the units
upon which it depends.

Example

The TAG graphical user interface (GUI) library provides a GUI API to pro-
grams which is independent of the underlying window system. A TAG program
is developed and compiled for the TAG APL.

At compile time, link time, or run time, one or more concrete implementa-
tion of TAG (CIT) units can be added to the program, about which neither
TAG nor the program have prior knowledge. Each of these CITs employs a
load method to register itself as a CIT with TAG.

Various CITs exist and multiple CITs coexist within a program. The user
may indicate a preferred CIT through a library option. Of course, the CIT
to be used thus can be dynamically loaded using :extend.

For example, the CIT to connect to an X server is named x; to open the
X display crypton:0, the option :display=x:crypton:0 can be used. As a

5.4. RUN-TIME ENVIRONMENT 81

special hack, to soothe the unexpecting user, the load method of the x CIT
recognizes and handles the customary -display command line option, as in
-display crypton:0, and the DISPLAY environment variable. Which only
shows the flexibility offered by the load methods.

O

5.4.5 Garbage collection

Automated garbage collection is important to have in an object oriented en-
vironment. The opposite technique, manual storage management, hampers
encapsulation: having to know when to free the memory that is occupied by
an object is having to know too much about the object and its clients. With
the extensibility of TOM, manual storage management becomes even less
of an option. TOM-1 employs a time-constrained incremental write-barrier
mark & sweep garbage collector (GC) based on the concurrent GC described
in [11].

Various library options are available to control some parameters that affect
the GC operation. :gc-pth sets the object allocation threshold which triggers
a run of the garbage collector for :gc-ptl milliseconds, :gc-stat requests a
memory status report just before the program exits, &c.

5.4.6 Debugging support

While debugging, it can be desirable to set a breakpoint on messaging a par-
ticular object, messaging with a particular selector, or messaging a particular
object with a particular selector. The latter is more or less easy if you know
the method that will be invoked as a result. However, the first two are not
easy to set since they involve a possibly very large number of methods.

All method dispatches in TOM-1 are guided through a single lookup func-
tion, which accepts an object and a selector and returns the method to be
invoked. It is of course possible to set a breakpoint on this function and
make it conditional on the selector or the receiver. However, contemporary
debuggers require a context switch to the debugger to evaluate the condition,
thus reducing the execution speed by several orders or magnitude. The same
problem occurs in the case when both the receiver and selector are known
and a breakpoint is set on a particular method, but the first few thousand
occurrences of the breakpoint must be skipped: each occurrence triggers a
switch to the debugger, greatly influencing execution speed.

In these circumstances avoiding the context switches can turn this major
debugging problem into a piece of debugging cake. TOM-1 actively sup-
ports this: condition evaluation—does the receiver match? does the selector
match?—can be performed by the run-time library, incurring very small over-
head on every method dispatch when compared with a normal run without

82 CHAPTER 5. TOM: IMPLEMENTATION

a debugger. On a match, the library invokes a particular function, and the
debugger needs only to set a breakpoint on that function.

In the current implementation, the method lookup function performs the
check for matching selectors or receivers and, before that, whether the check
is necessary. The overhead is one test of a global variable per method lookup,
incurred in every run of every program. On the other hand, there are circum-
stances where it is instrumental in making a problem debuggable.

5.5 Availability

Just like freedom is important in the design philosophy of TOM, freedom is
important for TOM-1, the implementation of TOM discussed in this chapter.

A programming language has reached an important goal when it is being
used as such. For example, a compiler and environment for the Self program-
ming language [43] has long been available for free, but with only the Sun
SPARC as a target [35] and without availability of sources, implying that
everybody who did not have access to such a machine was not in a position
to use Self.

As another example, Eiffel has long been a language for which a compiler
or environment was not freely available. This situation was only recently
remedied by the GNU SmallEiffel compiler [9]. Even Bertrand Meyer, the
man behind Eiffel, observes that “Sather[...] has the benefit of a public-
domain implementation” [29, §35.6] (Sather is a language that started as an
Eiffel derivative).

When using TOM-1, the programmers of present code can not annotate as-
sumptions in their code that may affect the programmers of future code nega-
tively; past code is amendable by future code. This open attitude is reflected
in the licensing of TOM-1. TOM-1 is available under the least restrictive
open source license available: the TOM compiler and tools are distributed
under the terms of the GNU General Public License [12]; the libraries are
distributed under the GNU Library General Public License [13].

This means that programs developed using TOM-1 can be used for com-
mercial applications, and that any bug fixed in the TOM-1 tools, or changes
made to the libraries, should be fed back to the official distribution. How-
ever, the extensibility of TOM code makes the developer almost independent
of what bugs or limitations the libraries contain: he can fix them in his own
programs!

Chapter 6

Reflection

The first chapters of this dissertation argue that flexibility through extensibil-
ity is an answer to the problem of limited reuse in object-oriented program-
ming languages. Later chapters present the TOM programming language that
has been developed to implement that answer. In this chapter we will survey
the benefits offered by the flexibility of code as provided by TOM.

6.1 Conditional extensibility

TOM provides extensibility at compile time, link time, and run time. The run-
time extensibility is unique for TOM, being the reason for its development.

Extensibility at compile and link time, i.e., during the development of a
project, can be regarded as being largely a feature of the development tools,
i.e., the compiler and linker. As such it is not restricted to a particular lan-
guage, as is indeed shown by the IBM VisualAge C++ compiler [22] providing
C++ with the extensibility of subject oriented programming [19]. This line of
reasoning can also be reversed: if compile-time and link-time flexibility can be
added to a rigid language like C++4, then run-time flexibility can be removed
from code written in a flexible language like TOM.

Removing flexibility from code increases its execution speed and can result
in a reduction of its size. These features can be important for, for instance,
embedded systems, where processors must be cheap, hence slow, and the
ROM small, hence full. Systems with such strict constraints usually provide
no means or incentive for exploiting the run time flexibility, and any flexibility
will be viewed as unnecessary and an undesirable overhead.

An example of removing flexibility is the removal, where possible, of dy-
namically bound method invocations, i.e., replacing dynamic binding by static
binding. One step further, a small statically bound method can be inlined to
save to overhead of the call.

84 CHAPTER 6. REFLECTION

Developing a complex application always involves decisions on the right
amount of flexibility. Popular programming languages like C++ do not ex-
hibit much flexibility and adding the proper amount of flexibility to a program
is a difficult job. On the other hand, an important advantage of flexibility
removal is that it can be automated: one can write a compiler that removes
flexibility from a program, as shown by whole-program compilers such as [6].
Comparing the two approaches, the choice is between repeated ad hoc man-
ual addition of flexibility to every program and automated removal of the
generically available flexibility. TOM enables the latter.

6.1.1 Extensibility time

Removing run-time extensibility is a deployment decision.

The creator of a program knows how the program will be deployed and
he is therefore the only person eligible to remove extensibility from the code.
Library developers, on the other hand, do not have such knowledge and,
consequently, binary distributed libraries must be fully flexible. Unless the
linker, which is responsible for combining object code from libraries and the
program, performs link-time optimizations, removing flexibility is a compile-
time operation. A compiler operates on source code, and the more source
code is available, the better the result can be. The best result is therefore
obtained by a whole-program compiler.

When considering to assign extensibility removal to the linker—for instance
in an attempt to enable binary distribution of libraries—several disadvantages
show. Most importantly, the linker is a tool that is platform specific and not
language specific. When a language requires specific linker functionality, the
portability of the language is restricted. In addition, even the more obvious,
non-language specific, linker optimizations such as function inlining and func-
tion call interface specialization are CPU specific and would require consid-
erable effort for each additional CPU that is to be supported. The economics
of linker modification are even worse for dynamic, run-time, linkers.

Concluding, developing a language to require extra functionality at link
time signifies an unfortunate design decision. The reduction of code flexi-
bility is best done at compile time. Consequently, flexibility of code is best
manipulated by a whole-program compiler.

6.1.2 Extensibility scope

Extensibility removal is not a binary decision.

Flexibility need not be a yes or no question. Full flexibility can be main-
tained in some parts of the code, while it is removed from other parts. The
flexible parts can, for instance, be identified by classes that need to remain

6.2. VARYING SOFTWARE VERSIONS 85

fully extensible. The flexibility demand then applies to those classes and their
subclasses.

Classes that are usefully kept flexible are situated along boundaries be-
tween sub-systems in a complete system, e.g., between a program and its
input/output functionality, a program and its plug-ins, or a kernel and its
device drivers.

6.1.3 Extensibility range

Non-extensibility during deployment does not preclude extensibility during
development.

Extensibility is an aid at development time: extensible code is less fragile
than non-extensible code. As a result, small changes in the source code induce
little changes in the object code and recompilation can be fast. On the other
hand, when a small source-code change can induce many object-code changes,
one may express to the build tool the dependency of those object files on that
source file or header file. With such dependencies, many a small change will
cause recompilation of many source files. Without such dependencies it is
possible that a recompile necessary after a change is erroneously omitted,
causing bugs that are hard to find.

Of course, extensibility at development time is more interesting for the test
and debug opportunities that it provides, as will be discussed in the next
section. On the other hand, in a large project involving many programmers
and a source code management system, the advantage of not needing to ac-
quire a write lock on a particular source file, just to experiment with a slight
modification to a class contained therein, should not be dismissed.

6.2 Varying software versions

This section and the sections to follow discuss software testing and testing
possibilities offered by the code being extensible. This section describes dif-
ferences between the released version of a program and its test versions, and
why test versions are important. The next section introduces an example
software project (the elevator) and uses it to explain what software testing
entails. The two sections following discuss the possibilities.

6.2.1 Software test versions

It is common for the source code of a program to contain code that is only
conditionally compiled. As a result, when compiled for the purpose of debug-
ging or testing, the program will be different from the released version of the
program.

86 CHAPTER 6. REFLECTION

As an example, in a program that is written in C, conditions can be asserted
at run time using the assert macro from the include file <assert.h>, for
example:

assert (1 + 1 == 2);

will result in code equivalent to something like:

do
{
if (1 (1 +1==2))
{
fprintf (stderr, "assertion failed: 1 + 1 == 2\n");
abort ();

}

} while (0);

Using assertions, the programmer states his assumptions governing the
code, even the most trivial ones (though usually less trivial than in the ex-
ample). The idea is that when some bug is introduced during development,
some assertion will fail and reveal the bug early. The assertions in a program
thus aid in debugging and testing. Part of a test plan can be, for instance,
that no assertion shall fail during any test.

Obviously, when time has come to compile the released code, those asser-
tions are no longer necessary. This not only saves space; it is easier for a
customer to accept a program occasionally crashing, than it is to explain to
the customer that letting the program provide incomprehensible explanations
of a problem, like

Assertion failed: 1 + 1 ==
Bus error, core dumped

is easier than it is to prevent the problem in the first place.

When compiling for actual release, all code of our example C program is
recompiled with the NDEBUG macro defined. As a result, the code equivalent
of the assert example will be

which is a null operation. It is normal for a released program executable to
contain few or no sanity checks. This is positive, since not checking saves
execution time and memory space.

6.2. VARYING SOFTWARE VERSIONS 87

6.2.2 Regression testing

An important aspect in software testing is repeatability: a bug can only
be usefully examined if the circumstances leading up to the exposure of the
bug can be reproduced. When a bug is repeatable, a new test case X can
be developed for it, and part of the specification for the next release of the
software will be ‘test case X must pass.” Until the bug is fixed, the software
will fail this specification.

It is widely known that software is fragile: fixing a bug can introduce new
bugs, not infrequently even bugs that were previously fixed. It is therefore
almost mandatory to not only test that our new program passes test case X,
but also test cases 1,2,...,X — 1. Only if none of the bugs that were fixed
reoccur, we can be sure that the quality of the program did not regress. The
collection of test cases for previous bugs is called the regression test suite,
which is used during regression testing [3].

6.2.3 The economy of building test cases

Suppose we are working on Project L, which spans many released versions
during many years. At some time, many years into the project, one of the
customers reports a grave bug that we must be certain of avoiding in the fu-
ture. By the test plan of Project L, every valid bug that is reported must be
covered by a test case in the project’s regression test suite, so we try to under-
stand the problem and reproduce it on the current version. Unfortunately, we
fail to reproduce it, so we try it on a freshly-built test version of the program.
We fail to reproduce on the test version too, but not being able to trigger the
bug does not help us, since according to the test plan, we need a test case.
Trying to trigger the bug at the customer’s site, using the customer’s version
of the program, can be rather impractical. We end up needing a test version
of the binary running at the customer’s site.

Obtaining a test version is easy if a project releases to the public about once
a year or even less frequently, since in that case we need to keep only a limited
number of test versions stand-by to address this problem. Unfortunately,
Project L has neither millions of anonymous users nor exactly one user. Like
many software projects, there are a few customers, each of whom receives
some version of the software that is tailored to his situation and which is
updated on demand. In such cases, retrieving the right version of the sources,
to compile and build a test version, can be troublesome and time consuming.
The situation is aggravated if the customer can include third party software
into our product. Recompiling a test version of the whole system as it is
running at the customer’s site has become next to impossible.

88 CHAPTER 6. REFLECTION

6.2.4 The economy of building test versions

Apparently, the economy of building a test case for a bug that a customer
reported depends on the economy of building a test version of the program
allowing us to scrutinize the problem. When code is extensible, we can design
the test version of the program to consist of the released version of the program
with a test extension. When we need to have a test version of the program
that runs at the customer’s site, we can simply retrieve the customer’s binary
and run it with the test extension. When the interface between the program
and test extension does not change often, we can use the most recent version
of the applicable test extension.

It is of course possible to develop or use multiple test extensions for a pro-
gram, for instance one for each distinct subsystem. A test extension requires
extensibility of only certain classes. The flexibility in other classes may be
removed, but the less flexibility is available throughout a program, the less
possibility you have of changing your mind in the future, about what needs
to be extensible or not.

6.3 A testing example

As an example, we have implemented software to control a system of elevators.
As shown in figure 6.1, the system consists of a number of elevators that
service a number of floors. On each floor, a prospective passenger can issue
a request to travel up or down, and within each elevator carriage, he can
request to visit any floor. Furthermore, each floor has three position switches
for each elevator: one to indicate that the carriage is near and above the floor;
a similar switch below the floor, and one exactly on it. When a swiftly moving
elevator carriage hits a position switch near a floor, there still is enough time
to slow down and stop at that floor.

In the stylized world of our example, our expensive hardware is connected
to a single network through which all communication takes place. When
for example the state of a switch changes, the switch posts a message on the
network, and when the motor that drives an elevator needs to start, it receives
a message from the network. As depicted in figure 6.2, in the software that
controls the elevator system, device drivers abstract the control application
from the actual hardware.

Testing a software system is a process of different stages (see [3] for a
thorough introduction to software testing):

unit testing This is the first step in testing. Unit testing tests the func-
tionality of the building blocks of the system. Good examples of such
building blocks are single classes or other units of code developed by a

6.3. A TESTING EXAMPLE 89

Al oorsT £,

v down

® £ .

®

®

® \$

@ S
_~ o0
-

fo
% 8
—>
elevators

Figure 6.1: An elevator system and its various inputs.

single developer. Strategies for unit testing try to ensure that all code
in the unit makes more-or-less sense, for example by trying to execute
all statements at least once; trying all conditions both ways; or trying
all paths through the code.

As an analogy, if we were directing a play, unit testing would involve
each actor practicing his lines in front of a mirror.

integration testing The next step in testing, integration testing tests the
various building blocks to interact as expected and specified.

For the play, we practice the scenes, making sure each actor does what
he is supposed to do with the other actors present and active (enter left;
dialogue; exit right).

system-level testing System-level testing determines whether the system
actually provides the functionality it is to provide. Various strategies
exist for devising system-level tests. To name one important example,
transaction testing tests whether transactions are properly handled by
the system. A transaction can be anything that enters the system, is
processed, and possibly leaves. In our elevator, a passenger trip can be
viewed as a transaction. The passenger enters the system with the first
request (‘I want to go up’) and exits the system when the doors open
at the destination floor (and the passenger leaves the carriage).

In our play, we would be practicing the whole play or, in a sub-system
test, a complete act, to see whether everything feels good to the actors
and director, and whether the message is clear to the public.

90 CHAPTER 6. REFLECTION

application

switches | doors | motors | displays

Y 7'y

v 4 v

hardware

Figure 6.2: Application communicates with hardware through device drivers.

When testing an elevator at the system level, we test whether the software
behaves correctly in all circumstances, or in a suitably large number of cir-
cumstances for us to feel confident. In this case, correctly means according to
specification. It is not difficult to specify the behaviour of the example eleva-
tor system: transport people safely and efficiently. The software controls the
transport; the software behaves correctly if it ensures that the specification is
not violated, i.e., when its actions in response to its input stimuli are correct.

The problem with testing elevator software is that it takes humans, time,
and an elevator. Regression test runs recur frequently, which makes the in-
volvement of humans undesirable and long test runs expensive; the involve-
ment of humans implies that repeatability is impossible; &c. A solution that
is often opted for is record and play back (depicted in figure 6.3): record the
stimuli of a test once (6.3a) and play them back as often as desired later
(6.3b). The advantages are obvious.

Though used extensively, record-and-playback approaches to software test-
ing have several disadvantages. Two of these are significant for our goals (for
more information, see [3]):

1. The software must be prepared for running with record-and-playback.
The testing is part of the design and the testing functionality is part
of the source. This means that, e.g., third-party libraries, or other
code that was not part of the design, can not be tested with the same
approach.

2. A session must have been recorded before it can be played back. When
hardware and software are developed concurrently, this implies that
system-level or subsystem-level testing of the software can not start
until hardware is available.

6.4. UNPLANNED TESTING 91

application application
} i ! ! { i ! {
\ record | play back \

! ! ! !

switches | doors | motors | displays

1 i 1 !

hardware

(@ (b)

Figure 6.3: Events recorded once (a) can be played back later repeatedly (b).

Though record and play back is the only example of system-level testing that
is presented here, the problems that are presented with it are universal for
system-level testing. The next section shows how extensible code enables
unplanned preparation of software for the purpose of testing.

6.4 Unplanned testing

The previous section discusses how the elevator software can be tested when
the testing concept of the application was part of its design. The true strength
of code extensibility is that even if testing was not planned, a test extension
can still be developed [32]. This is important when employing a library that
is provided by a third party, with different goals, a different design, and an
unknown test plan. With extensible code, it is possible to develop and apply
a test extension independently afterwards.

This section describes an example of the development of a test extension
for the elevator from section 6.3. In fact, when we developed the elevator
software, the development of the test extension was unplanned, on purpose.
Put differently: in the design of the elevator software, we did not anticipate
the development of a test extension. Of course we had the advantage that we
could look at and learn from the full source of the elevator while developing
the extension. Note however, that not having the sources is not a problem: in
a language that provides run-time extensibility and flexibility, all important
information, such as class names and method signatures, is available at run
time and does not necessarily need to be retrieved from the source. In the

92 CHAPTER 6. REFLECTION

development of a test extension, aided by a debugger and the extensibility,
that information is easily retrieved.

The remainder of this section describes an approach for developing a test
extension, focused on particular elements of the system: the switches. The
approach applies equally well to the other elements of the system; the focus
keeps the example clear.

In the software that controls the system, every tangible entity in the ele-
vator system is proxied by an object. An event in the hardware is sent as a
message over the network and delivered to the corresponding proxy object.
For example, for each switch, there is an instance of a Switch class. When
a switch changes state, ultimately the following method of the corresponding
Switch is invoked:

void
switch boolean new_state;

When considering only the switches, while testing the system with a record-
and-playback approach, a play back involves invoking the switch method at
appropriate times, as previously recorded. Underlying the testing process is
the assumption that the software will, in the real world, respond correctly to
the switches, when it, during testing, responds correctly to invocations of the
switch method. We can abstract from the detail that a play back must be
preceded by a record, and pose that, as far as the switches are concerned, we
can test the system by appropriate invocations of the switch method. This
can, of course, be abstracted to any method of any object.

The basic idea is that for the purpose of testing the software, we only need
to invoke the right methods at the right time (and observe the outcome of
the tests as usual). Which methods are right depends on the system, the
part of the system that is tested, and the desired or required accuracy of the
tests. Which time is right depends on the system, the part of the system that
is tested, and the desired or necessary accuracy of the tests. This concept
enables a certain approach to testing; it is not a recipe to all-encompassing
success.

As an example: to test a calculator, the speed at which the, real or testing,
user types is largely irrelevant until we start testing the calculator’s respon-
siveness and speed. It is possible to use the same testing approach for the
speed tests and functional tests, but if that approach is too slow, functional
testing can be done in a way that abstracts from time, for example by not
taking the time waiting for user input into account or by running on a faster
machine. The next section is a concrete example of this approach.

6.4. UNPLANNED TESTING 93

Elevator test extension

To continue the elevator example, the software responds correctly to the
switches by correctly responding to the invocations of the switch methods.
This is true for all methods along the boundaries of what appear to be the
device drivers—since our testing is unplanned we have no knowledge about
the design and we do not actually know the device drivers in the code.

When the system was written in a language like TOM, the methods along
the interface to the device drivers can be replaced by a test extension, as is
depicted in figure 6.4. When the test extension is loaded, it replaces the device
drivers with something that does not depend on the hardware. What exactly
the test extension provides depends on the level of detail that is desired in
the tests, or that is needed by the software under test.

application

1 ! 1 !

\ test extension \

Y S . S 1‘ ””” E
[S —— v______ y_ - v ___

|
!

|
|
‘ hardware |
!

|
!

Figure 6.4: The test extension obviates the device drivers.

As an example of the abstraction from time, useful system-level tests can
be performed by feeding the system a trace of input events and checking the
output events. Time-independent trace tests neglect the issues that real time
has on the system. This can be seen as a disadvantage, as bugs can be time
dependent, but also as an advantage: all bugs that are not time dependent
can be tested without the burden of real time. Being time independent, the
software can run on the fastest machine available, further speeding up the
tests. If all sources are available, it could even be recompiled to run on even
faster machines.

Experiment

We have implemented a test extension for the elevator control software to
perform transaction testing on the elevator scheduler. The extension removes

94 CHAPTER 6. REFLECTION

any dependencies of the elevator software on the elevator hardware, as de-
picted in figure 6.4 [33]. The extension as implemented takes over the device
drivers and situates them in a simulated world that is inhabited by simulated
passengers. As implemented, the world is made up of the following players:

elevators All elevators are identical, they travel at constant speed, and ex-
hibit infinite acceleration and deceleration. They can carry any number
of passengers and take constant time to load and unload.

floors All floors are identical. They are equally spaced and each floor can be
visited by all elevators.

passengers All passengers are equal. They have a 50% chance of wanting to
travel to floor 0 when not already on that floor. Otherwise, they have a
50% chance of wanting to travel a distance that is larger than a quarter
of the number of floors. When arriving at a floor, a passenger will wait
for a random time, uniformly distributed between 5 and 100 seconds.
With this behaviour, a passenger in the simulated world is equivalent
to multiple persons in the real world.

switches The guidance switches at every floor in every elevator shaft are also
present in the simulated world.

The elevator guidance switches are small, though they are large enough
for the floor switch to be turned on by the elevator and stay on while
the elevator stops at the floor.

motor Every elevator is powered by a motor. In the test extension, the motor
device driver actually maintains the simulation of the moving elevator
cage. When instructed to start moving, it repeatedly generates events
to inform the guidance switches of being manipulated.

The simulated world is parameterized by the number of elevators, floors,
and passengers. Furthermore, the physical dimensions and constraints of the
system are defined at compile time—of the test extension. They are listed in
table 6.1.

Table 6.1: Simulated dimensions.

‘ description value unit
distance between floors 3 m
guidance switch distance from floor | 0.25 m
switch length 0.01 m
elevator speed 1.2 m/s

6.4. UNPLANNED TESTING 95

The non-determinism inherent to a real-time system like an elevator system
implies that a string of events can not be replayed to show exactly the same
outcome. This is true in the real world and it simplifies the simulated world.
As a result, generating test cases for the purpose of replay is not a possible
testing approach. On the other hand, not being able to simulate and re-
simulate events precisely introduces much freedom with respect to time: the
freedom to run on a faster computer and the freedom to otherwise influence
time.

The testing approach provided by the elevator test extension is that of
generating random scenarios. While playing these scenarios, the system is
checked to not violate safety, deadlock, liveness, and other rules. This ac-
tually imposes a strong demand on the simulation, in the sense that enough
interesting cases must occur often enough during tests, in an attempt to avoid
testing only trivial cases.

In our simple simulated world, we can not influence the occurrence of in-
teresting events; we have not even defined what makes events interesting.
Instead, we choose to test such a large number of cases that the interesting
ones will probably occur too.

Running a large number of test cases requires many transactions to be
processed by the system, i.e., many passenger travels. Unfortunately, testing
many transactions implies a long testing time. Fortunately, we are in a posi-
tion that the exact notion of time does not matter, and we can run the tests
on faster machines.

The next step in maximizing the number of transactions that can be pro-
cessed in a test run, stems from the fact that an elevator control system is idle
most of the time. It needs only to respond to events, and when an elevator
is not moving, nothing interesting will happen to it until it starts moving.
Moreover, in our simple simulated world, nothing can happen to an elevator
between hitting guidance switches. In test runs, such periods of time during
which nothing can happen, can be skipped.

Decoupling simulated time from the real time has a dramatic effect on
the run time of experiments. For example, with 20 persons inhabiting a
simulated world that contains a single elevator to service 20 floors, a day in
the experiment has actually elapsed in 33 seconds outside the experiment.
Put differently: a day with 12.5 - 10° passenger travels is simulated in little
over half a minute. More figures, with a varying number of elevators and
passengers, and a constant 20 floors, are shown in figure 6.5.

As figure 6.5 shows, the run time of an experiment depends on the number
of elevators, much more than on the number of persons. This stems from the
fact that in this event driven system, handling the events is what costs time,
and most events are generated by the elevator guidance switches. The persons

96 CHAPTER 6. REFLECTION

run time (s) _

350
300
250
200
150
100

50

20
30

#persons

Figure 6.5: Run time of an 86400-second rush-hour experiment.

only make the elevators move and more persons means more passengers to
share an elevator (and more prospective passengers to wait for an elevator).

Figure 6.6 shows the number of times a passenger successfully traveled.
For every 10 extra persons in the simulated world, the number of passenger
travels increases approximately 25%, whereas it only increases about 10% for
every extra elevator. This can be explained by the abstractions of the testing
model. It has been optimized for simplicity while still exercising that part of
the software that governs the system-level transactions, the elevator scheduler.
This has resulted in a model with the infinitely large elevator cages, constant
1-second load/unload time, and the fact that, even if the number of elevators
increases and every elevator is so busy that it will stop at every floor, most
of the time the elevator will be moving at 1.2m/s between the floors that are
3m apart.

The model offered by the test extension is of course tailored for the testing
goal. It is possible to increase the accuracy of the model, increasing the run
time but also adding possibilities for more checks, for instance, safety checks
concerning the elevator doors. The model that we employed suffices for testing
the elevator scheduler. In fact, by using the test extension, we found a bug
in the scheduler. Testing many transactions appeared to be important, since
the bug showed up only after 3-10* seconds of simulated time and more than
10* transactions.

The discovered bug appeared as a passenger having to wait half an hour
for an elevator. The bug was that the elevator had visited the floor while the

6.4. UNPLANNED TESTING 97

#movements \

50000
45000
40000
35000 [
30000 [+— / |
25000 [+ y

20000 / / / i
15000
10000

20

30 #elevators

35

#persons

Figure 6.6: Passenger movements in an 86400-second rush-hour experiment.

request was outstanding, only to unload a passenger and continue travel in the
other direction than the direction of the request. The scheduler erroneously
marked the request as having been serviced.

After extensive testing, all passenger waiting and travel times can be ob-
served to be normal, in that none is significantly longer than the others. We
are now confident that the scheduler is functioning correctly.

Library extension

In the preceding sections, the separation of simulated time and real time is
taken for granted. In the context of an event-driven simulated world, such a
feature is indeed a non-issue. However, in this case, the simulation is main-
tained by a plug-in that is loaded into a program for the control of a real-world
elevator. Neither the program has been prepared for this extension, nor the
libraries used.

So, how can the simulation actually work? The answer will not be a sur-
prise: the test extension simply extends, apart from the device drivers in the
program, also the libraries, in two places:

1. The Date class in the tom library unit provides a notion of time as
double values with respect to some beginning of time. This epoch is
usually the start of the program, enabling the program to maintain
the time close to its own starting time with very high accuracy, and

98 CHAPTER 6. REFLECTION

still discern milliseconds centuries from now. Since all time stamps are
relative to the epoch, increasing the epoch advances time. The extension
to the tom unit adds a method to the Date class to allow modification
of the epoch.

2. The RunLoop class from the too library unit is used by the elevator
software as the event dispatcher; it provides events from file descriptors
and timers that can be set. The extension to the too unit replaces
the method of RunLoop that implements the central dispatch loop. The
modified method can be requested to not wait idly, advancing time every
time it would otherwise wait, thus firing timers continuously.

6.5 Hardware/software co-development

A major problem in the development of hardware/software systems is that
the hardware is often finished earlier than the software. It is possible to
remedy this problem if it is possible to start earlier with development of
the software. The testing approach presented in the previous section, which
enables software testing without the hardware, can obviously also be used as
a development approach, enabling software development without availability
of the hardware. Test extensions should be developed in conjunction with the
software, as early availability of test extensions enables early testing of the
software system.

A common setup for hardware/software projects reflects the duality of the
system in the organization: the hardware group develops the hardware and
the software group develops the software. These groups are destined to not
understand each other. In the proposed development approach, a third group
is required, to develop the project’s device drivers and testing extensions. The
members of this group will need to understand both the hardware and soft-
ware disciplines and can act as mediators between the software engineers and
hardware engineers, understanding the needs of each group both as consumers
and producers.

6.6 Hardware/software co-design

A popular trend in the research into hardware/software co-design is to hunt for
the best language in which to describe complete systems. These languages are
always programming languages, since a program can be executed to provide a
simulation of the system being described and many programmers are available
for the widely known languages.

6.7. APPLICATIONS 99

Currently, Java is popular because it is machine independent and because
the language provides multi-threading constructs (e.g., [20]). However, lan-
guage dependence on certain run-time facilities, such as the dependence of the
Java language on multi-threading, does not make the language more suitable
than languages which do not depend on such facilities. In both cases, the
run-time libraries provide support for those facilities.

It can be argued that TOM is the better system specification language,
since it is not biased towards execution on any specific machine. Even Java
has a bias: its much-touted machine independence is nothing more than a
dependence on the Java Virtual Machine (JVM) [27]. On the other hand, any
language can be used as a specification language: even a suitably extended
subset of C is usable as a hardware description language [26]. In essence, the
success of a system specification language depends on the semantics that the
tools give to utterings in the language, and the availability of tools that allow
sensible application.

6.7 Applications

TOM is a programming language. To research the real applicability and
usefulness of the possibilities that it offers for software testing, many more
experiments must be performed than the single elevator experiment described
in section 6.4. The experiments should be performed by many different per-
sons in many different projects. Before these people—you, reader, could be
one of them—can be convinced to perform such an experiment, they must be
convinced of the positive outcome of the project, even if the particular testing
experiments would not meet high expectations.

For people to undertake the venture of starting to use a new programming
language, they must be convinced that it will be worth it. The alternative, to
invent something that attracts wide attention and to which the language is
secondary, is not easily done. Examples of such successes are UNIX introduc-
ing C and executable content in web pages which was enabled by including
Java in the web browser.

In addition to the elevator testing experiment, the following projects, great
and small, were implemented in TOM. Some are real applications in real use.
Some have been implemented up to proof of concept.

Libraries

mu The meta unit consists of parsers for TOM source and unit files and a
collection of skeletal classes to represent TOM language constructs. The
parsers are generated by gp (see below).

100 CHAPTER 6. REFLECTION

TAG The TOM Abstract GUI library unit provides a NeXTSTEP-like API
featuring a unified imaging model, without relying on PostScript like
NeXTSTEP does [1]. The flexibility of the TAG architecture is briefly
described on page 80. Concrete implementations of this abstract GUI
exist for X11 displays and PostScript printers.

tdbc The TOM Data-Base Connectivity library unit provides a simple and
quite popular tabular database abstraction that is also available for
Python (see http://python.org), Java (http://java.sun.com), &c.
Currently tdbc has only one back-end, supporting the PostgreSQL
database engine (see http://www.postgresql.org).

tomgtk A glue code library to enable the development of Gtk+ and GNOME
programs in TOM (see http://gtk.org and http://gnome.org). The
glue code takes care of various issues, making automatic and implicit
in TOM code what is manually explicit in, e.g., C code. The two most
important of these issues are storage management and run-time type
checking.

Programs

gp Generates parsers: for a given grammar, gp emits a class that implements
a recursive descent parser. Supporting the gp parsers is the gps library
unit which, among other things, defines a skeletal parser and lexers.

tm Meta TOM is the TOM documentation extractor: it generates class docu-
mentation from TOM source files, aided by <doc> ...</doc> comments
that a friendly programmer adds to every method, instance variable,
and class. tm employs mu.

tesla A TOM compiler under development, tesla is the first TOM compiler
to be written in TOM. Designed to be a whole-program compiler, it
currently provides the same functionality as the TOM-1 compiler: ev-
erything is fully flexible and extensible. Flexibility removal is the next
big thing to be added. tesla employs the same parsers from mu as used
by tm.

An interesting implementation aspect of tesla is its use of a class hi-
erarchy to represent host and target platforms. Only the platform-
describing classes that are relevant for the compiler to be built are ac-
tually compiled into the program. (They could be dynamically loaded.)

bit Builds interfaces for TAG, it resembles the NeXTSTEP Interface Builder.
bit is a tool to define the user interface of programs that employ TAG.

6.7. APPLICATIONS 101

bit can be in one of two modes: either the user interface is being built
by creating and manipulating user-interface elements, or the interface is
being tested with the user-interface elements behaving as they normally
do. These modes are added by bit to all TAG user-interface elements
through the extension of two TAG classes. The TAG library does not
contain provisions for this dual behaviour exposed by bit.

Illustrate It! [t/ is a vector-based single-image drawing application in the
spirit of Adobe Ilustrator and Altsys Virtuoso. It uses TAG and employs
plug-ins to provide its functionality. All tools are provided by plug-ins,
even the grid is a plug-in. The program itself is not much more than a
framework for single-page documents with objects as content. Expected
extensions (sic): Present It!.

Vault A tool to manipulate circuit descriptions in VHDL. Vault is described
in the next section.

Miscellaneous

see An application-specific database for an AltaVista-like web search service
(http://www.altavista.digital.com), accompanied by a spider and
a web server.

dnews A usenet news server that employs a PostgreSQL database to store
news articles and that communicates with the client through NNTP.

dnpwe A collection of CGI scripts that run from a web server to maintain
a database of news items with user comments and quality weighing of
items and comments through a voting system. Similar web-site concepts
are increasingly popular and can be seen in successful action on, for
example, Slashdot (http://slashdot.org). dnuwe employs tdbc.

mod_TOM A module for the Apache web server allowing Apache’s function-
ality to be extended in TOM, similar to the way in which mod PERL
allows Apache to be extended in Perl (see http://www.apache.org and
http://www.perl.org).

The extensibility of code that TOM provides allows for example the mu
unit of TOM parsers to step lightly over issues concerning its use. It does
not matter whether the mu classes will be subclassed before use or simply
extended. In either case, extensibility enables easy reuse.

This observation is generally true for library units written in TOM. TOM
libraries allow a large degree of freedom to their users. Additions and slight
modifications to a class are easily done, without the need for subclassing or
other complexity increasing constructs.

102 CHAPTER 6. REFLECTION

6.8 Vault

Vault is a tool that has been developed to perform clock gating on register-
transfer level (RTL) circuit descriptions in VHDL. Clock gating is a technique
to reduce the power consumption of synchronous digital sequential circuits.
This power reduction is achieved by suppressing the clock signal to flipflops
at moments when the new value is identical to the current value. Since gen-
erating a gated clock from the normal clock signal requires an additional
flipflop, to save power, multiple flipflops must be clocked by the same gated
clock. Flipflops governed by the same clock reside in the same clock domain.
The complexity of clock gating lies in the process of determining the clock
domains.

The operation of Vault was previously described in [34]. This section ex-
plains its architecture.

Figure 6.7 depicts the unit architecture of Vault. Every box denotes one of
the units making up the program and an arrow denotes a dependency. Italic
names denote pre-existing library units; the other units were developed to
create Vault. Furthermore, the grey units and dependencies do not involve
extensions.

tom

T

bdd rtlkit aps

l l

rtibdd vhdlw vhdlr

1 i f

Figure 6.7: The units architecture of Vault.

Central to Vault is the rtlkit library unit which consists of a large num-
ber of classes to represent circuit descriptions and instantiations thereof, e.g.,
N-bits adders and a circuit employing several 8-bit adder instances. An in-
stantiation can be created from a description, and vice versa. Though the
vocabulary employed in rtlkit matches the vocabulary of VHDL, rtlkit
is not specifically targeted at VHDL. In fact, rt1kit can not read or write

6.8. VAULT 103

descriptions in any language, though it is designed to be general enough to
be usable for both VHDL and Verilog descriptions.

The rtlkit unit extends the QutputStream class of the tom unit to main-
tain a level of indentation. This enables easy creation of properly indented
and readable output.

The vhdlw unit extends the rtlkit classes with the ability to emit them-
selves in VHDL. Other units could be developed to add output in additional
languages. Nothing in the design of rtlkit needs to cater for this kind of
output, since this functionality is added directly to the affected classes instead
of being added in the form of code that operates on those classes.

The vhdlr unit adds to rtlkit the ability to read VHDL code. vhdlr
employs gps for its definitions of an abstract parser and lexer. The vhdlr
parsers are however not created by gp; most of vhdlr is glue code to the
actual parser that comes as C code.

The bdd unit is glue code to a BDD library written in C [25]. The rtlbdd
unit employs the bdd unit to extend the rtlkit class that represents nets
in an instantiation with the ability to reason about their boolean function.
rtlbdd also extends the bdd unit to directly reference from each BDD variable
the net to which it corresponds.

The vault unit simply is the main program that parses the command
line and invokes the required functionality as offered by the library units.
This functionality can be summarized as follows: read the VHDL source files
(vhdlr), instantiate the top entity (rtlkit), compute the next-state values
of all clocked flip-flops (rtlbdd), compute the clock domains and modify
the affected instantiations (rt1bdd), create new architectures and entities for
those modified instantiations (rtlkit), and emit the new descriptions and a
configuration to use them (vhdlw).

An advantage of the library-oriented setup to Vault is that each part is
reusable without the burden of the unnecessary parts. rtlkit is the core
library for RT-level circuit descriptions. vhdlr is only needed for applications
that need to read VHDL code. Similarly, vhdlw is only needed for VHDL
output. rtlbdd is only needed when information is required about the boolean
functions on the nets. This setup would not have been possible without the
extensibility of code as provided by TOM.

104 CHAPTER 6. REFLECTION

Chapter 7

Conclusions

7.1

Achievements

This dissertation describes flexibility of program code through the extensi-
bility of classes. An extensible class is open to modification, most notably
through the addition of methods, object variables, and superclasses. The ex-
tensibility of classes provides significant advantages to the developers of past,
present, and future code:

future Extensibility allows the developer of future code to adjust the classes

present

past

from past code. Such changes can range from an occasional method
addition to complex extensions to the original design, for example to
add facilities for automated software testing.

Extensibility enables an organization of classes that is not dictated by
the boundaries of source files. A source file can contain any number of
classes and the definition of a class can be distributed over any number
of source files.

Extensibility allows the developer of past code to apply changes to an
evolving library without requiring recompilation of all future code. On
a computer system employing shared libraries, this means that an in-
compatible version increment is necessary far less often than without
extensibility.

Extensibility reduces the demand on the library developer to deliver a
complete, feature-full, library of widely reusable components. Future
code can extend the library at will as necessary, allowing the library
developer to focus on the design of the structure instead of the features.

An important concept in object-oriented programming is encapsulation,
i.e., the hiding of implementation details. Encapsulation is usually enforced at

106 CHAPTER 7. CONCLUSIONS

compile time, directed by source code annotations. In support of extensibility,
TOM provides mechanisms to break the encapsulation defined in source code,
which is possible only by strict encapsulation in object code and at run time.
In addition, this allows classes to be extended even if their source code is not
available.

Run-time encapsulation requires a level of indirection to every access of a
method or object variable. In the reference implementation of TOM described
in this dissertation, the computational overhead is limited, by precomputation
and caching, to few indirections upon every access, without requiring much
memory. Exact figures are not available since exact measurements are difficult
to conduct. The computational overhead is in the order of 10% for method
binding and less than 1% for variable binding.

The flexibility that is offered by extensibility offers a significant advantage
over the flexibility inherent to many frameworks and libraries: whereas the
addition of flexibility requires human creativity, the remowval of flexibility can
be performed by a compiler. The different requirements of compilation dur-
ing program development (high speed) and compilation of production code
before deployment (high quality) can be accommodated by maintaining full
flexibility during development and removing as much flexibility as possible
and desired upon deployment.

7.2 Future work

Research into the flexibility of code, using TOM as a vehicle, may continue
in several directions.

e Finish the development of tesla, the TOM compiler written in TOM,
to complete it as a whole-program compiler. Whole-program compila-
tion of TOM code would enable the use of TOM in resource-constrained
applications. Furthermore, it could show the usefulness of partial flexi-
bility of code and its automatic derivation from full flexibility as opposed
to the common ad hoc manual addition.

e Once TOM is an accepted object-oriented programming language and
used by real people in real projects, the true usefulness of flexibility
of code through extensibility can be quantitatively measured. Possible
measurements include the number of extensions employed in a program
with respect to various other quantities or, more difficult, the design or
implementation time saved by using them.

As with all programming languages, the most important goal for TOM is
to be used by many programmers. In pursuit of that goal, the availability of
a good tutorial on programming in TOM would be a fine first step.

Glossary

block What is known as a block in some languages is referred to as a com-
pound expression in TOM. A block, from Smalltalk, is a compound
expression of which the evaluation is postponed: the block becomes an
object of which a method is invoked to trigger evaluation.

cast (verb) To change the type of a value. Most casts are performed implic-
itly, since explicit casting is nasty. For example, if A is a subclass of B,
which in turn is a subclass of C, then an expression with type B can be
implicitly cast to C but must be explicitly cast to A.

category A collection of methods that can be added to a certain class. The
category is a concept used by Smalltalk and Objective-C.

class A class defines a type along with its operations, and provides an imple-
mentation of that type and the operations. Instances of the class will
fit the type.

class messaging Sending messages to a class object.

class object In programming languages that provide class objects, every
class is represented by its class object.

class method A method of the class object. In a language without an
explicit object denoting a class, the concept can still be present as a
method that does not depend on the state of a particular instance.

class variable Conceptually, an object variable that belongs to a class ob-
ject. Also in languages without class objects, the term is often used to
denote a global variable that is declared in the scope of a class, hence
available only to the instances of that class.

client A person or entity that uses or enjoys certain services. Mostly used
from the perspective of the provider of the services.

client code Used in the context of a class A, client code is code that uses
A, possibly as a subclass but most often from an unrelated source.

code Something that can be executed. Popular appearances are source code,
which is written by a human, and machine code, which can be read by
a machine.

108 GLOSSARY

compile (verb) To translate utterings in a source language to utterings in a
target language, while preserving functionality. The target language can
be readable—many compilers translate to C—but usually it is machine
code.

compiler A program that compiles, usually reading source files and writing
object files.

compile time While the compiler is running, i.e., during the translation of
source code to object code.

conformance A type B conforming to a type A implies that all operations
that are supported by type A are also supported by B. (The reverse is
not true.)

curry (verb) To provide a function with partial arguments, the result of
which is a new function with less arguments.

declare (verb) To inform the outside world of the existence of something,
without providing an implementation of it.

deferred class A class that does not implement all methods that are present
in its interface. A class is deferred if it declares some methods without
defining them, or if it inherits from a deferred class, without implement-
ing all deferred methods.

deferred method A method that causes a class to be a deferred class. A
deferred method has been declared but not defined.

define To provide an implementation. Often, a definition also serves as a
declaration.

dereference Literally, to remove a reference. Thus when considering a
pointer, dereferencing it means to consider the value at which the pointer
points.

development time The period of time during which something is devel-
oped. This ranges from a few minutes for a trivial example to multiple
years for Very Large Programs.

dispatch See method dispatch.

dynamic library A shared library which is dynamically linked to a process
as part of starting the program.

dynamic linking To link at run time. This most often refers to combining
the code of a process with that of a plug-in, but is also applicable at
process startup, when associations of the program with the dynamic
libraries are resolved.

dynamically At run time. Opposite of statically.

encapsulation Hiding something, e.g., object variables or implementation
details.

exception An exceptional situation, or an object employed for the indication
of such a situation. Usually associated with the unwinding of a stack.

GLOSSARY 109

expanded class Instances of an expanded class are always passed by value,
as opposed to the normal by-reference passing.

extensibility The possibility of being extended. In this dissertation, exten-
sibility denotes the possibility to modify the behaviour of objects.

flexibility Something is flexible if it can be easily extended, or applied in
circumstances not envisioned by the designer (not if it bends well).

glue code Code that enables code in one language to use use functionality
that is offered by code written in another language.

implementation In general, an implementation fulfills the promises made
by an interface. In object-oriented programming terminology, the im-
plementation of a class consists of its methods definitions and variables.

implementation file A source file that contains definitions. An implemen-
tation file provides the implementation of, e.g., a class.

implementation inheritance Inheritance by a class, which inherits both
interface and implementation from the superclass.

inherit To acquire certain features, such as object variables, methods, and
a position in the inheritance hierarchy.

inheritance hierarchy A directed acyclic graph (DAG) in which each node
is a class and an edge from the class depicted by the source node inherits
from the class of the destination node.

inline display To display something within a document, instead of display-
ing only a reference.

instance An object, with the explicit exclusion of class objects. Any number
of instances can be created at run time.

instance variable A variable is a name of a storage location. With an
instance variable, the storage location is contained in an instance, i.e.,
the instance variable is part of the object’s state.

interface In general, the outside appearance. In object-oriented program-
ming terminology, the interface of a class is defined by its behaviour,
i.e., by a declarations of the available methods. As such, an interface
and a type are very much alike.

interface file A source file that contains declarations. An interface file pro-
vides the interface of, e.g., a class.

interface inheritance Inheritance of only interface, as opposed to imple-
mentation inheritance. Usually unqualified inheritance is not interface
inheritance.

kind Referring to some, often weak, classification in a context where using
the words type or class may cause confusion. For example, kinds of
objects certainly does not refer to their classes.

library A collection of object files, accompanied by interface files. A library
provides functionality that can be used by many programs.

110 GLOSSARY

link (verb) To combine object files, possibly retrieving them from libraries
in order to resolve undefined references. This activity is performed by
the linker to combine libraries and object files into an executable.

linker A program that links.

load (verb) A synonym for link.

member C++ terminology for anything that is part of a class. A member
function is a method, a member variable an instance variable, unless it
is static, in which case it is a static class variable.

message A conceptual entity, used in sending a message to an object. The
message contains argument values and an indication of the method sig-
nature of the method that is to be invoked. (The class of the receiver
of the message determines which method actually matches.)

messaging super Sending messages to self while acting to be an instance
of a direct superclass instead of the real class of self. Frequently used
to invoke the original method from an overriding method in a subclass.

method A piece of code associated with a class. A method is an imple-
mentation of a certain operation. Apart from the class association, a
method is much like a function in a programming language like C.

method activation The execution context of a method that has not finished
yet, usually discernible as a stack frame.

method dispatch The mechanism underlying the invocation of a method
as a result of sending a message to an object.

method overriding Defining a method that would otherwise be inherited.

method signature The outside of a method, i.e., its name, argument types,
and return type.

multi dispatch Determining which method to invoke based on all arguments
of the invocation. The term message-send no longer applies since a single
receiver object can not be discerned.

multiple inheritance Inheritance that allows multiple direct superclasses.
Opposite of single inheritance.

non-local return A return from a method, but not necessarily returning to
the method caller. A non-local return can return from any outstanding
method invocation, instead of only the most recent one (i.e., it can
return to any outstanding method invocation instead of only the caller
of the current method).

object A piece of data that is encapsulated by methods. The only way to
interact with the object is to invoke its methods; the data is not directly
accessible.

object code Machine instructions in an object file.

object file A partial program, the object file contains machine code with
partially unresolved subroutine calls. See link.

GLOSSARY 111

operation A type offers certain operations that can be performed on values
of the type. A type is implemented by a class and the operations by the
class’ methods.

platform An executable program can only run on one particular platform,
which is defined by the combination of the hardware and the operating
system.

plug-in An extension of a program, a plug-in is object code that can be
dynamically loaded into a program. A plug-in is usually developed,
maintained, and upgraded independently of the program.

polymorphism A mechanism underlying method invocations that obeys the
actual class of the receiver of the message-send. When the object is an
instance of a subclass of the class assumed by the caller, polymorphism
ensures that the method dictated by the subclass is invoked.

process A running program.

proper subclass A proper subclass of a class A is any subclass of A, except
A itself.

proper superclass A proper superclass of a class A is any superclass of A,
except A itself.

receiver The object that receives a message. It is the self in the method
that is invoked as a result.

resend Within a method of a subclass, a resend passes the method invoca-
tion to the method of a superclass. This is a less flexible variation on
messaging super.

run time While the program is running. Frequently used as opposite of
compile time.

selector Part of a message-send, the selector dictates the name, argument
types, and return type of the method that is invoked in response to the
message. See also method signature.

self In many programming languages, the variable referring to the receiver
of the message which caused the invocation of the method. This actually
is an implicit argument.

scope Visibility, most often of the names of types and variables.

shared library A library of which the object code is not duplicated in every
program but shared between them. The cleanest implementation is
provided by dynamic libraries.

shared object Different name for a dynamic library.

signature See method signature.

single dispatch Determining which method to invoke based on the receiver
of the message-send.

single inheritance Inheritance that allows only a single direct superclass.
Opposite of multiple inheritance.

source code Input to a compiler; usually written by humans.

112 GLOSSARY

stack The stack of a CPU.

stack variable A variable of which the storage location resides on the stack.
When the variable goes out of scope, for instance because the method
exits, the storage location is destroyed.

state The state of an object denotes the data carried in all object variables
of the object.

static Usually used to mean that something is defined or known statically,
i.e., at compile time.

statically At compile time. Opposite of dynamically.

storage location A location, of unspecified size, at some address in memory.

subclass (noun) A subclass of a class A is A itself or any class that inherits
from A, directly or indirectly. See also proper subclass.

subclass (verb) To subclass a class A is to create a class B as a subclass of
A, and to use B instead of A.

subtype A type A is a subtype of type X, when values of type A can also
be considered as values of type X. Compare with subclass.

super A name for self acting to be an instance of a superclass. This can
only be used when messaging super, i.e., as the receiver of a message.

superclass A superclass of a class A is A itself or any class from which A
inherits, directly or indirectly. See proper superclass.

test extension An extension of a program that, like a plug-in, is loaded at
run-time. The goal of a test extension is to aid in testing the program.

thread A thread of control in the address space of a process. Multiple threads
can run in a process. Each thread has its own CPU state and accompa-
nying stack. On a multi-CPU machine, threads may run concurrently.

type A constraint on the operations that are supported by values of that
type.

unit testing Testing a unit of code for its basic functionality. Prime example
of such a unit is a class.

variable A storage location with a name and a type.

value Something that resides at a storage location and has a certain type.

virtual A C++ keyword that allows the programmer to specify that the
member function to which it is applied exhibits polymorphism.

whole-program compiler A compiler that considers all source code of the
program that it compiles. Opposite of a normal compiler for which the
unit of compilation is a single source file.

wrapper Something that wraps around something else, to give it a different
appearance or interface. When certain objects, usually defined in past
code, do not conform to a type to which they should conform, each of
those objects can be wrapped by a wrapper object which does conform
to the desired type.

Bibliography

[1]

[2]

[4]

[5]

Adobe Systems. Programming the Display PostScript system with
NeXTstep. Addison-Wesley, 1992.

Gerald Baumgarter and Vincent F. Russo. Signatures: A language exten-
sion for improving type abstraction and subtype polymorphism in C++.
Software Practice and Ezperience, 25(8):863-889, August 1995.

Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold,
second edition, 1990.

Grady Booch. Object-Oriented Analysis and Design, with Applications.
Benjamin/Cummings, second edition, 1994.

Craig Chambers. The design and implementation of the SELF compiler,
an optimizing compiler for object-oriented programming languages. PhD
thesis, 1992.

Craig Chambers, Jeffrey Daen, and David Grove. Whole-program com-
pilation of object-oriented languages. Technical Report 96-06-02, Uni-
versity of Washington, Seattle, WA, June 1996.

Graig Chambers. The Cecil language—specification and rationale. Tech-
nical report, University of Washington, Seattle, WA, March 1997.

Patrick Chan, Rosanna Lee, and Douglas Kramer. The Java class li-
braries, volume 1. Addison-Wesley, second edition, 1998.

Dominique Colnet and Suzanne Collin. SmallEiffel the GNU Eiffel com-
piler. http://smalleiffel.loria.fr.

Brad Cox. Object-oriented programming: an evolutionary approach.
Addison-Wesley, second edition, 1991.

Edsger W. Dijkstra, Leslie Lamport, A.J. Martin, C.S. Scholten, and
E.F.M. Steffens. On the fly garbage collection: an excercise in coopera-
tion. Communications of the ACM, 21(11):966-975, November 1978.

114

[12]

[13]

[14]

BIBLIOGRAPHY

Free Software Foundation. GNU General Public License, June 1991.
Version 2.

Free Software Foundation. GNU Library General Public License, June
1991. Version 2.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

Adele Goldberg and David Robson. Smalltalk-80: the language. Addison-
Wesley, 1989.

Charles F. Goldfarb. The SGML Handbook. Oxford University Press,
October 1990.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specifica-
tion. Addison-Wesley, 1996. Version 1.0.

Hanspeter Mossenbock. Extensibility in the Oberon system. Nordic
Journal of Computing, 1(1):77-93, 1994.

William Harrison and Harold Ossher. Subject-oriented programming (a
critique of pure objects). ACM SIGPLAN Notices, pages 411-428, 1993.

Rachid Helaihel and Kunle Olukotun. Java as a specification language for
hardware-software systems. In International Conference on Computer-
Aided Design, San Jose, CA, 1997.

Urs Holzle. Integrating independently-developed components in object-
oriented languages. In Proceedings of the European Conference on Object
Oriented Programming, Kaiserslautern, July 1993. Springer Verlag.

Support for subject-oriented programming in CH++.
http://www.research.ibm.com/sop/sopmont .htm.

5th International Conference on Software Reuse. IEEE Computer Soci-
ety, June 1998. http://www.cs.vt.edu/icsrb/.

IEEFE Standard Portable Operating System Interface for Computer En-
vironments (POSIX, IEEE Std 1003.1-1988). IEEE, 1988.

Geert L.J.M. Janssen. The Eindhoven BDD Package.
ftp://ftp.ics.ele.tue.nl/pub/users/geert/bdd.tar.gz.

David Ku. Hardware-C — a language for hardware design. Technical
report. Version 2.0.

BIBLIOGRAPHY 115

[27]

28]

[29]

[30]

[31]

[32]

[33]

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1996.

Bertrand Meyer. Reusable Software: the base object-oriented component
libraries. Prentice-Hall, 1994.

Bertrand Meyer. Object-oriented software construction. Prentice-Hall,
second edition, 1995.

Bertrand Meyer and Eric Bezault. Dynamic linking in Eiffel. Technical
Report TR-EI-49/DL, Interactive Software Engineering, February 1996.

Harold Ossher and William Harrison. Combination of inheritance hier-
archies. ACM SIGPLAN Notices, 27(10):25-40, 1992.

Pieter J. Schoenmakers and Jochen A.G. Jess. Facilities for testing con-
trol software. In IEEFE High Level Design Validation and Test workshop
1997, November 1997.

Pieter J. Schoenmakers and Jochen A.G. Jess. Testing software suffering
from hardware. In ProRISC/IEEE workshop on Circuits, Systems, and
Signal Processing 1997, November 1997.

Pieter J. Schoenmakers and J. Frans M. Theeuwen. Clock gating on RT-
level VHDL. In International Workshop on Logic Synthesis 1998, pages
387-391, June 1998.

The Self project. http://www.sunlabs.com/research/self/.

NeXT Software. Object-oriented programming and the Objective-C lan-
guage. 1993.

1997 Symposium on Software Reusability, May 1997.
http://www.lfs-owego.com/ " ssr97/.

Richard M. Stallman. Using and Porting GNU CC. Free Software Foun-
dation, 1995.

Richard M. Stallman. The Emacs Editor. Free Software Foundation,
13th edition, 1998.

Guy L. Steele. Common Lisp the language. Digital Press, second edition,
1990.

Bjarne Stroustrup. The C++ programming language. Addison-Wesley,
third edition, 1997.

116 BIBLIOGRAPHY

[42] Kresten Krab Thorup. Optimizing message lookup in dynamic object-
oriented languages with sparse arrays. In FreeSoft 1993, Moscow, Russia,
March 1993.

[43] David Ungar and Randall B. Smith. Self: The power of simplicity. ACM
SIGPLAN Notices, 22(12):227-241, December 1987.

[44] Unicode Consortium. The Unicode Standard, Version 2.0. Addison-
Wesley, September 1996.

[45] N. Wirth and J. Gutknecht. The Oberon system. Software Practice and
Ezperience, 19(9):857-893, September 1989.

[46] 8th Annual Workshop on Institutionalizing Software Reuse, March 1997.
http://www.umcs.maine.edu/ " ftp/wisr/wisr8/wisr8.html.

Index

Pagenumbers in bold reference a definition of the term;

italic pagenumbers reference an entry in the glossary.

:extend, 80
A

abnormal comment, 73
abstract data type, 9
accessor method, 47
A11, 44, 46, 65
introspection methods, 62
method condition failures, 67
method forwarding, 64
alloc class method, 46, 60
allocator, 60
annotation
comments, 73
of assumptions, 28
Any, 45
API, 15
of a kernel, 19
application domain, 27
applications, 99
associative array, 39
availability of source, 17
of TOM compiler, 82

basic types, 36
behavioural inheritance, 44
bit, 100

block, 69, 107

boring arguments, 66

C

C
assert macro, 86
function pointers, 31
C++
signatures, 23, 32
virtual, 28
casting, 107
category, 107
Cecil, 25
CIT, 80
class, 2, 40, 107
invariant, 69
messaging, 107
method, 3, 25, 107
object, 3, 107
posing, 22, 24, 49
variable, 43, 107
class (id), 61
classes
development of, 8
client, 107
client code, 107
clock domains, 103
clock gating, 102
closed source, 18
cmd, 51, 64, 67
co-design, 98
co-development, 98
code, 107

118

code support relation, 15, 16
comment, 73
compilation model, 5
compile, 108
compile time, 5, 108
compiler, 5, 108
component, 7
compound expression, 37
conditional compilation, 85
conditions, 58
in C, 86
conformance, 2, 108
constant
examples of, 56
selector, 56
current programmer, 16
curried invocation, 69
curry, 108

debugging, 81, 92
declare, 108
default value, 36, 38, 43
of method arguments, 66
deferred class, 108
deferred method, 108
define, 108
onuwe, 101
dependency relation, 16
deployment, 28
and numeric types, 37
assumptions, 28
control over, 25
dereference, 108
development speed, 27
development time, 108
device driver, 88
dhmwi, 101
dispatch, see method dispatch
DLE, 18, 30
dnews, 101
doc comments, 74
document

INDEX

display, 14

generation, 14

processing, 13
documentation comment, 74
domain analysis, 7
dynamic binding, 3, 76
dynamic library, 13, 108
dynamic linking, 6, 13, 108

in Eiffel, 18
dynamic type, 74

example use, 56
dynamically, 108

Eiffel
DYNAMIC class, 30
dynamic linking, 18
source availability, 18
elevator example, 88
encapsulation, 3, 42, 47, 108
in object code, 105
exception, 108
executable, 5, 11
execution model, 4
execution speed, 27
expanded class, 2, 41, 109
extensibility, 21, 30, 72, 76, 109
conditional, 83
during deployment, 85
operations, 21
extension, 48
in Cecil, 26
extension hierarchies, 20
extern, 71, 74

FALSE, 65
flexibility, 109
in library frameworks, 106
of code, 11
of source code, 10
fragile code, 31, 42, 76, 85
freedom, 32, 82
full source access, 18

G

INDEX

future code, 16, 33, 105
future type, 42

garbage collection, 81
generic type, 42

glue code, 19, 36, 74, 75, 109

gp. 100
GPL, 82
gps unit, 100, 103

hardware, 11, 27
header file, 5

hello, world, 34
hw/sw co-design, 98

hw/sw co-development, 98

id type, 37, 59
identity, 3
Tustrate It

, 101
implementation, 2, 109

file, 109

hiding, 31

inheritance, 109
inherit, 109
inheritance, 2, 44

hierarchy, 109
initializer, 59
inline display, 14, 109
inline function, 23
input filter, 13
instance, 2, 109

variable, 2, 42, 109
instance (id), 60
integration testing, 89
interface, 2, 109

file, 109

inheritance, 109
Invocation, 62

currying, 63
invocation, 53

J

K

L

119
isa, 40, 46, 61

Java
applet security, 29
as a specification language, 98
final, 29
interfaces, 45

kernel, 14
kind, 109

language boundary, 19

LGPL, 82

library, 5, 12, 109
options, 79-81
unit, 34

link, 7110

link time, 5

linker, 5, 110

load, 110

load method, 79, 80

low power, 102

main extension, 48
main method, 34, 80
malloc, 42
malloc debugger, 42
member, 110
member function, 28
message, 4, 110
message-send, 4
messaging super, 57, 110
meta class, 3, 40
method, 2, 110
activation, 110
body, 4, 52
conditions, 53, 67, 72, 79
default argument values, 72
definition, 51
forwarding, 64
heading, 52

120

invocation, 53
name parts, 51
overloading, 55
override, 2
overriding, 110
signature, 110
method binding, 3, 83
implementation, 76
in C++, 28
method dispatch, 110
mod_TOM, 101
modifier method, 47
modifying source access, 17
mu unit, 99, 101
multi dispatch, 25, 53, 110
multi threading, 4
multiple inheritance, 110
multiple return values, 32
mutable, 47

named extension, 48
named return value, 52
nil, 37

no source access, 18
non-local return, 110
normal comment, 73
NULL pointer, 37

O

Oberon, 23

object, 2, 110
type, 40
variable, 42

object code, 5, 110

object file, 5, 110

Objective-C, 24
category, 24
protocols, 45

obsolete, 69

old operator, 68

open source, 18, 82

operating system, 11, 14

operation, 1, 111

INDEX

operators, 38

origin of code, 11

0SS, 14

output filter, 14
OutputStream, 56, 103

parameterized type, 42
pass by reference, 40
pass by value, 40

past code, 16, 33, 105
perform methods, 62
planned reuse, 9
platform, 11, 28, 111
play back, 90

plug-in, 13, 111
polymorphism, 29, 111
portability, 73

posing, see class posing
postcondition, 67
precondition, 67
present code, 16, 30, 105
print methods, 56
private, 30, 48
process, 111

program, 12

program unit, 34
proper subclass, 111
proper superclass, 111
protected, 30, 48
proxy class, 19
public, 47, 48

receiver, 4, 51, 111

record and play back, 90
redeclare, 65

regression testing, 87
repeated inheritance, 29
resend, 111

return-value assignment, 52
reuse of code, 7

rtlkit unit, 102

run time, 6, 111

INDEX 121

run-time environment, 6, 76 subtype, 2, 112
super, 24, 112
S messaging, 57
Sather, 82 &g,
superclass, 2, 112
scope, 111 roper. 111
see, 101 PTOPeL,

supertype, 2
support relation, 15
system-level testing, 89

selector, 4, 111
with dynamic argument, 56

self, 51, 111

sending a message, 4 T

shared library, 13, 111 tab-to-space example, 8, 21
shared object, 111 var-tab-to-space, 21
signature, see method signature TAG unit, 80, 100
simplicity, 32 target language, 19
simultaneous assignment, 39 target machine, 28
single dispatch, 53, 111 taxonomy of code, 15
single inheritance, 24, 111 tdbc unit, 100

single threading, 43 template type, 42
SmallEiffel, 82 tesla, 100, 106
Smalltalk object model, 40 test extension, 112
software testing, 85 test plan, 86

testing, 85

thread, 43, 112
thread-local variable, 43
threads of execution, 5
throw clause, 59

source availability, 17
source boundary, 17, 71
source code, 111

source composition, 21
source language, 19

specification languages, 98 tm, 74, 100

stack, 112 tomgtk unit, 100
stack variable, 112 Top, 45

State, 46, 59 traditional reuse, 7
state ,42 ,1 12 transaction testing, 89
state binding, 78 TRUE, 65

statements, 4 tuple, 39

static, 112 type, 1, 112 .
type adaptation, 20

static binding, 3
type cast, 50

static class variable, 43

static library, 13 U

statically, 112 Unicode, 36

storage location, 112 unit, 33

subclass unit file, 34
(noun), 2 unit of design, 7
(verb), 8, 112 unit testing, 88, 112

proper, 111 unplanned reuse, 10

122 INDEX

value, 112
var-tab-to-space example, 21
variable, 112
Vault, 101, 102
Verilog, 102
VHDL, 102
virtual, 29
virtual, 28, 112
void type, 37
W
whole-program compilation, 26, 30,

84, 112
wrap, 9, 19, 112

Biography

Pieter Schoenmakers was born on 8 May 1967 in Breda, the Netherlands. He
attended grammar school het Stedelijk Gymnasium in Breda before starting
for a degree in Electrical Engineering at Eindhoven University of Technology
in August 1985. After 4 years he took a 6-month break to work as a pro-
grammer in the MACH group at Acorn Computer in Cambridge, England.
Too many interesting projects, part-time diversions, and service in the Dutch
army later, he graduated on 16 December 1993. In the next year, he sold
computers, did consulting work, and ended up developing audiotex software
in Amsterdam. On 1 January 1995 he started as a Ph.D student in the Design
Automation Group of the department of Electrical Engineering at the Eind-
hoven University of Technology, the result of which being the dissertation you
are reading.

Pieter’s research interests include everything that people (developers, re-
ally) need to use or create computers and derivatives: languages, compilers,
libraries, operating systems, networking software, and computer hardware.
Pieter’s professional interests include every challenge for which his knowledge,
experience, and understanding will be valuable tools.

The future is uncertain, as it should be.

10.

11.

12.

Stellingen bij het proefschrift
Supporting the Evolution of Software

door Pieter J. Schoenmakers

. Types zijn generalisaties en bijgevolg te strikt.

. Het ontwerpen van een programmeertaal met één specifieke compiler-

implementatie in gedachte gaat voorbij aan het feit dat tijdens de
ontwikkeling van een programma vooral de compiler snel moet zijn
terwijl na de ontwikkeling nog slechts de snelheid van de
gecompileerde code telt.

. Het nut van het keyword const wordt in de C++ standard template

library geillustreerd door het bestaan van zowel iterator types als
ook const_iterator types.

. Een programma is een executeerbare specificatie.

. In een ontwikkelomgeving met meerdere programmeurs en ezclusive

write locks staat het exclusieve recht een file te modificeren op
gespannen voet met de universele plicht bugs te fixen.

. Een leeftijdsgrens aan de verkoop van tabak, en het daarmee impliciet

gedogen van roken in bepaalde leeftijdscategorieén, zou beter een
bovengrens zijn.

. In een sorry-democratie geldt niet langer: Een man, een man,

een woord, een woord.

[Peper komt na fout terug op politie-CAQ, de Volkskrant,
28 januari 1999]

. De mogelijkheid een binnenkant te bekijken

is een uitnodiging de buitenkant te begrijpen.

. Specialisten—de tegenhangers van generalisten—doen zichzelf en hun

werkgever tekort.

De softwarecrisis wordt veroorzaakt doordat de mensen met de juiste
capaciteiten de kunst van het programmeren verloochenen.

‘Bezint eer ge begint,” maar vooral ‘reflecteer daarna weer.’

Twijfel aan uw gereedschap!

