Facilities for testing control software

Pieter J. Schoenmakers
<tiggr@ics.ele.tue.nl>

Jochen A.G. Jess

<jess@ics.ele.tue.nl>

Department of Electrical Engineering
Eindhoven University of Technology
P.O.Box 513, 5600 MB Eindhoven, the Netherlands

Abstract

In this paper we outline an approach to the develop-
ment and testing of control software for embedded sys-
tems. This approach enables system level testing of the
software without the hardware with which it normally
interacts. This independence implies that testing can
commence prior to hardware availability and it enables
unattended, frequent test runs.

The proposed method is a generalization of existing
ad hoc solutions to similar testing problems. We ob-
serve the requirements underlying this generalization
and present an object oriented programming language
that meets these requirements.

1 Introduction

In large co-designed embedded systems two kinds of
software can be discerned. One kind is largely con-
cerned with algorithmic data processing; the other
kind is the software that handles the control of the
whole system. This control software can be very com-
plex; it is the result of a design effort by a possibly
large team. In a concurrent design process, this team
faces the problem of testing the control software while
the hardware system it will run on is not yet avail-
able. In the project’s maintenance phase, hardware
will be available but testing every corner of the soft-
ware while depending on the actual hardware might
not be a feasible option. All in all, it is desirable, if
not mandatory, to be able to test the control software
independent of the hardware system.

In this paper we propose a general method for
testing control software independent of the hardware,

which

e supports real time load and stress tests,

e cnables testing at higher levels of abstraction than
plain hardware interfacing, and

e can provide hardware designs with realistic test
benches.

More specifically, we describe the general facilities
that must be offered by the test environment and
the system level specification language to support this
method. A major goal of our work is to enable unat-
tended test runs of load and stress tests at the system
and subsystem level. Unattended runs enable (fre-
quent) regression testing, which increases the confi-
dence in the system’s correct operation.

In section 2 we compare our testing method with
existing approaches; section 3 outlines the method.
Section 4 defines the requirements of the development
environment in support of the method; section 5 intro-
duces the environment’s programming language. Be-
fore concluding, we present the results of applying the
method to the example of an elevator control.

2 Testing

Testing a piece of software consists of several steps:
the part of the system to be tested must be identi-
fied, test cases must be designed, served as input to
the system under test (SUT), and their outcome must
be verified against the expected results. Numerous
methods addressing these testing issues already ex-
ist [1] and the testing method presented in this paper
will not increase their number. Instead, we develop a
method that enables the application of these software
testing methods to situations where the software can-
not meaningfully operate without the hardware with
which it interacts.

In effect, the testing method proposed in this pa-
per is a generalization of ad hoc solutions to testing
software independent of the hardware. An example
of such a solution is testing a program on/through its
graphical user interface (GUT). In this case, the hard-
ware to be eliminated consists of the mouse, keyboard
and screen. The various ways of GUT testing all have
in common that, at some level of abstraction, user con-
trol of the mouse and keyboard is run by a test driver,
and, also at varying levels of abstraction, the program

output or state is checked against the expected results
as defined for the test. Generalizing these mechanisms
is a major goal of our work.

3 The method

Testing the software independent of the hardware re-
quires that during testing the hardware is replaced by
a model of the hardware. This model can e.g. be pro-
vided by a hardware emulator, a simulator running a
description of the hardware, but also purely by soft-
ware written for this purpose.

In general, during normal operation, the inter-
faces between hardware and software consist of pieces
of software which provide the control software with
an abstraction of the hardware. We use the term
hardware abstractions® to denote these interfaces (fig-
ure la). During test runs, each abstraction of hard-
ware must instead provide an abstraction of a model
of the hardware.

control program control program

. [(N
hardware abstractions harq are abstrg jons

A . .
testing extensions
v
A
hardware v
test driver

(@) (b)

Figure 1: normal operation (a), and operation during
testing (b).

While testing, the software to be tested (the system
under test or SUT) is controlled by a test driver. The
test driver is responsible for executing the tests and
verifying their outcome. To make the SUT ready for
execution, it is extended with testing extensions which
change the SUT’s hardware abstractions into abstrac-
tions of the hardware models, making the SUT inde-
pendent of the hardware on which it normally depends
(figure 1b). The hardware models then provide the
SUT with its inputs. These models in turn receive
directions from the simulated world in which they op-
erate. The simulated world is maintained by the test
driver, which can be customized to suit the SUT.

1We use ‘hardware abstraction’ instead of the widely used
‘driver’ to avoid confusion with ‘test driver’.

The test driver program provides a framework in
which the simulated world can be created and scenar-
i0s can be generated and, if applicable, recorded and
played back. Tests can be verified by comparing the
outcome against the outcome dictated by the scenario
or by checking the system’s behavior against sets of
invariants and postconditions. These conditions can
apply to the SUT, parts thereof, or parts of the simu-
lated world.

An important advantage of modeling the hard-
ware purely by software is that this enables model-
ing at higher levels of abstraction than plain inter-
faces. For example, checking the contents of a text
widget is much easier than checking its appearance on
the screen, and interacting with a program by issu-
ing events is much easier than simulating the mouse
and keyboard. Another advantage is that the hard-
ware models only need to be as good as necessary to
achieve the testing goal. For example, when doing ba-
sic transaction testing on an elevator control, only the
scheduling subsystem is being tested and timing infor-
mation can be safely omitted from the models. Only
when the tests are extended to include information on
time to service, the models must take into account the
time it takes for the cage to move and for passengers
to enter and exit. In effect this means that the testing
models can be developed in parallel with the system:
new models can be included as each subsystem is im-
plemented and existing models can be refined when
the needs of testing dictate so.

It is possible that the outcome of the tests cannot
be verified by observing the behavior of the hardware
models. In such cases the testing extensions must in-
clude functionality to observe the SUT’s internal state.
The testing extensions must also enable the test driver
to set the SUT s state at the start of a test. The exten-
sions should of course not alter the system’s behavior
as that would invalidate the test results or, even worse,
violate the truthfulness of the tests.

It is important to note that the testing extensions
are not an inherent part of the system’s functionality.
These extensions are absent during normal operation;
they are not part of the system’s design. If they were,
they would unnecessarily increase the complexity of
the system’s specification. This observation signifies
the difference between design for test (DfT) for hard-
ware and for software: with hardware DfT, specific fa-
cilities are incorporated into the design to gain access
to the hardware’s internal state, whereas with soft-
ware, access 18 essentially unrestricted, were it not for
the specification language or paradigm used.

The target machine on which the software is to

run might not be capable of supporting the software
plus testing extensions, for instance because it is too
small to include a test driver and it does not support
network communication which would enable running
the test driver on another machine. The testing pro-
cess must therefore be independent of the machine on
which testing is performed. To support real time test-
ing, the test driver must support distinctive notions
of elapsed simulated time, CPU time, and wall time.
For low precision timing, simulated time can be bound
to CPU time or even wall time. A higher accuracy of
simulated time is obtained by decoupling it from wall
time. When this does not suffice, simulated time must
be made independent of CPU time, e.g. by accurate
code instrumentation.

With simulated time being unrelated to wall time,
simulated time can be sped up to decrease the time
needed to run the tests, and it can be slowed down if
time is needed to compute a hardware model. Since
the testing process is independent of the machine on
which testing takes place, a suitable machine can be
chosen on which, for instance, coverage and profiling
tools are available.

4 Facilities

To support the testing method outlined above, the
following facilities are required:

e the possibility to extend the control software so as
to make it suitable for execution under the test
driver, i.e. to change the hardware abstractions
into abstractions of models of the hardware, and

e the possibility to extend the software in order to
make its internal state available to the test driver,
and to have the driver set the system’s state.

These requirements essentially state that it must be
possible to extend an existing program without those
extensions being part of the program’s design. This
extensibility has the advantage that the program and
its testing extensions can be developed independently.
In addition, some interesting advantages are offered if
extensibility does not require recompilation:

e older versions of the program can be tested
against the latest test extensions, without requir-
ing retrieval and recompilation of the old version
of the sources, and

e testing extensions can always be developed and
applied, even in case (part of the) source code is
unavailable.

5 Implementation

To evaluate the proposed testing method, we have de-
veloped an object oriented (OO) programming lan-
guage to be used as the language in which to develop
the control software. The required testing facilities
imply that the language must enable (1) modification
of the behavior of the objects implementing the hard-
ware abstractions, and (2) addition of behavior to any
object, to at least retrieve or set its internal state.
In a single sentence: the behavior of objects must be
amendable; this means that the way in which they
respond to method invocations can be changed.

We have designed and implemented ToM: an object
oriented programming language which supports the
testing paradigm presented in this paper. To this end,
TOM provides the following facilities:

e classes are extensible entities: a class is fully de-
fined by its main definition and any extensions
defined for it,

e an extension can add and replace methods. In
support of complex added behavior, an extension
can add instance variables. To promote reuse, an
extension can introduce additional superclasses,
and

e extensions can be added to a program at compile,
link, or run time.

TOM is an object oriented programming language in
the spirit of Objective-C [2] and similar to Java [3]
in its deviation from the original language. In the
remainder of this section, we address some of its prop-
erties that make it suitable for the development of
(control) software.

All objects reside on the heap that is managed by
an incremental tracing garbage collector. The garbage
collector can be invoked with a limit on the elapsed
time during its run. This limit can be lowered to de-
crease the latency in the program’s response to events.
Automatic invocation of the garbage collector can be
inhibited during time critical sections.

Every method invocation is dynamically bound.
This is required to be able to replace methods, since
the method invoked by a statically bound or inlined
method invocation cannot be overridden.

Direct access to instance variables is only possible
for the current object, self. Access to the variables
of another object must employ a method invocation.
This introduces some overhead, but ensures that to ad-
just the meaning or usage of a certain variable, a test-
ing extension needs to replace only a single method.

TOM discerns primitive types from objects. These
primitive types include integer and floating point
types. Values of these types are always passed by

value, as opposed to by reference, and operations on
them are statically bound. In short, such primitive
values are handled fast by a processor. This is impor-
tant for keeping a program’s execution time at accept-
able levels.

The overhead of dynamic method binding accounts
for approximately 5 to 10% of the CPU time, depend-
ing on the program. Garbage collection consumes up
to 10%, depending on the rate at which the program
allocates objects and disposes of them, and the fre-
quency of garbage collector runs (more frequent runs
in general reduce a program’s memory footprint at
the expense of CPU time). These times do not pose
a problem for the kind of applications for which Tom
was designed.

It is important to mention that the development
of programs in Objective-C is reported to take con-
siderably less time than the development of similar
programs in a language like C++, though no refer-
ences to any precise measurements are available. The
Objective-C advantage is generally attributed to its
extensive employment of dynamic binding and typing.
TOM outperforms Objective-C in this respect and is
expected to also exhibit this advantage. This means
that program development will take less time and for
control software of an embedded system, a decrease in
development time is generally more important than a
slight increase in a program’s execution time.

The interested reader is referred to [4] for more in-
formation on ToM.

6 Application

We have applied the proposed testing method to an
elevator control program. In this section, we sketch
the implementation and results. For a more elaborate
discussion, see [5].

The elevator control program controls a system con-
sisting of a number of elevators which must service
some number of floors. All elevators are equal, and a
request at a floor will be serviced by one of them.

The program employs several classes of objects that
provide an abstraction of physical entities such as the
engines, displays, and switches. In normal usage, the
example program employs a bidirectional stream of
bytes to interact with the hardware. Input from that
stream 1s handled by a parser, which decodes the input
events and invokes the proper method of the proper
object abstracting the hardware from which the event
originated. In the output direction, a command issued
over the stream is decoded and acted upon by the piece
of hardware that is identified by the command.

Commands are issued from the program by specific
methods of the hardware abstracting objects. Engine

commands, for example, are only issued from the ‘in-
structEngine’ method of the Elevator class; moreover,
this method performs no other action. Such localiza-
tion of interface to the hardware abstraction is the
only concession to testability that is present in the
design of the control program. It is not strictly nec-
essary, as the testing extension could duplicate any
extra actions of the overridden method. Localization
is, however, convenient.

6.1 Test extension

In the example testing situation we are interested in
proper operation of the elevator system and scheduler,
in its response to its inputs. This interface consists of
the switches in each elevator, on each floor, and the
guidance switches in each elevator shaft. We check
for proper operation by observing the time spent by
users waiting for an elevator to arrive and traveling,
by elevator, to their destination.

In the proposed setup, several subsystems are not
tested, including door management and information
display. The test could be extended to include these
as well; for our example testing goals they are not
needed.

In the simulated world, an elevator is modeled by
a cage that travels at constant speed, with infinite
acceleration and deceleration. The cage travels within
a shaft with all switches and floors at the appropriate
places. The simulated world is completed by virtual
persons which exhibit some semi-random behavior and
interact with the system by pushing switches.

The test extension applies the following modifica-
tions to the classes of the elevator control program to
make it suitable for running tests:

e Every command issuing method is replaced by a
method that triggers similar functionality in the
simulated world.

e The Elevator and Floor classes are modified so
that each instance maintains a set of persons that
observe the instance. The behavior that is com-
mon is added by inheritance of an extra super-
class.

e Several methods are replaced by empty methods
to ensure that the hardware interfaces which are
unused during testing, actually do nothing.

e Several methods are added to various classes to
provide direct (modifying) access to the objects’
internal state.

e A Person class is introduced to model the persons
inhabiting the simulated world and provide the
system with its inputs.

In the testing situation, with this very simple test
driver, simulated time runs synchronous to wall time

while executing code. Running the tests on a UNIX
machine with other processes occasionally needing the
processor’s attention, a precise (deep sub-second) no-
tion of simulated time cannot be maintained. On one
hand, this has the advantage of free non-determinism.
On the other hand, checking the test results cannot
be as simple as the comparison of an event trace with
known expected output. Correct operation of the sys-
tem is therefore checked by code; if none of these
checks fail, the system passes the test.

6.2 Time

Most of the time the elevator system is idle, waiting
for some switch to be hit. In simulated time, waiting
is necessary of course. In wall time however, waiting is
wasting time. This problem is solved by changing the
program’s notion of time whenever it is about to start
waiting: when it needs to wait for z seconds, time is
simply advanced by z. The first scheduled event will
then immediately trigger.

A similar problem with time is caused by lengthy
operations such as printing debug or log information.
In this case, the problem is solved by restoring time
afterwards to what it was before printing started.

Another difference between normal operation and
the testing situation is that during normal operation
method pre- and postcondition checking is usually dis-
abled, whereas they are usually enabled during test
runs. The side-effect of the time consumed by these
checks cannot be undone. Luckily however, their in-
fluence is no more significant than that of the different
machine on which the tests are run compared to the
normal situation.

With time manipulation performed as outlined
above, we can test the system in only a fraction of the
simulated time. For example, on a 180MHz PA-8000
in a HP9000/879, simulation of a system with 4 ele-
vators servicing 20 floors and 20 persons for 24 hours
completes in less than 150 seconds.

Execution time will obviously increase with the
quality of the test bench and the amount of adminis-
tration needed, but even a tenfold increase is insignif-
icant while maintaining the advantage of hardware in-
dependence.

7 Conclusions and Future Work

A major contribution of the method presented in this
paper is how existing software testing techniques can
be applied to embedded control software

e while not influencing the design of the system to
be tested (apart from prerequisites such as the
programming paradigm or language used),

e at the same abstraction level as the one at which
the program was developed, and

e without needing to revert to using a debugger or
other dirty testing methods.

The ideas presented in this paper are just that—ideas.
They have been tested on the relatively simple ex-
ample of a single-threaded event-driven soft real-time
program. For use in real applications, a test driver
and supportive framework must be developed. Before
this can be accomplished, other programming models
should be explored and the viability of the testing ap-
proach must be assessed for harder real-time systems.

References

1] Boris Beizer, Software testing technigques, Van Nos-
)) q)

trand Reinhold, 1990.

[2] NeXT Software, Object orienied programming and
the Objective-C language, Addison-Wesley, 1993.

[3] James Gosling, Bill Joy, Guy Steele, The Java lan-
guage specification, Addison-Wesley, 1996.

[4] Pieter J. Schoenmakers, The TOM programming
language, http://tom.ics.ele.tue.nl:8080/.

[5] Pieter J. Schoenmakers, “Testing software suffer-
ing from hardware”, proceedings of the ProRISC
workshop on circuits, systems and signal process-
ing, Vol. 8, to appear November 1997 .

