Testing software suffering from hardware

Pieter J. Schoenmakers

Jochen A.G. Jess

Department of Electrical Engineering
Eindhoven University of Technology
P.O.Box 513, 5600 MB Eindhoven, the Netherlands

Abstract

In this paper we propose a method for testing con-
trol software of embedded systems independent of the
hardware that is required by the software for normal
operation. This independence decouples, to some ex-
tent, software development from the development of
the system’s hardware, implying that (sub-) system
level testing of the software can commence prior to
hardware availability. In addition, the method makes
stress, load, and frequent regression testing economi-
cally viable.

I. INTRODUCTION

In large co-designed embedded systems two kinds of
software can be discerned. One kind is largely con-
cerned with algorithmic data processing; the other
kind is the software that handles the control of the
whole system. This control software can be very com-
plex; it is the result of a design effort by a possibly
large team. In a concurrent design process, this team
faces the problem of testing the control software, or
parts thereof, while the hardware system to run it
on is not yet available. In the project’s maintenance
phase, hardware will be available but testing every
corner of the software while depending on the actual
hardware might not be a feasible option. All in all, it
is desirable, often mandatory, to be able to test the
control software independent of the hardware system.

In this paper we propose a general method for test-
ing control software independent of the hardware.
More specifically, we describe the facilities that must
be offered by the test environment and the system
level specification language to support this method.
A major goal of our work is to enable unattended
test runs of load, stress, and other system-level tests.
Unattended runs enable frequent (regression) testing,
which increases the confidence in the system’s correct
operation.

In this paper we do not propose any new strategies
for designing tests, nor do we introduce new kinds of
tests. Numerous approaches to testing software, or
specific details thereof, already exist [1]. We want to

be able to apply those techniques to situations where
the software to be tested can not meaningfully oper-
ate without the hardware with which it interacts. In
this paper, we propose a method that enables running
tests without that hardware.

The proposed testing method is a generalization of
specific solutions to the problem of testing software
independent of the hardware. An example of such
a solution is GUI testing, where the hardware to be
eliminated during testing consists of the mouse, key-
board, and screen. Various approaches to GUI testing
exist. They all have in common that, at some level of
abstraction, user control of the mouse and keyboard
is run by a test driver, and, also at varying levels of
abstraction, the program output or state is checked
against the expected results as defined for the test.
Our goal is to develop a generic framework that sup-
ports such hardware elimination and testing of the
resulting system.

In the following sections, we will outline the design
method and its requirements and briefly introduce the
language we have developed in support of the method.
Before concluding this paper, we will describe in detail
the example of implementing and testing an elevator
control program.

II. OUTLINE

Testing software independent of the hardware with
which it normally interacts, requires that during test-
ing the hardware is replaced by a model of the hard-
This model can e.g. be provided by a hard-
ware emulator, a simulator running a description of
the hardware, but also by software written specifically
for this purpose.

During normal operation, the interfaces between

ware.

hardware and software consist of pieces of software
which provide the control software with an abstrac-
tion of the hardware. We use the term hardware ab-
stractions to denote these interfaces! (figure 1a). Dur-
ing test runs, each hardware abstraction must instead

'We use ‘hardware abstraction’ instead of the widely used
term ‘driver’ to avoid confusion with the term ‘test driver’.



control program control program

. (. (I
hardware abstractions har¢ are abstrg jons

1 testing extensions
A/ 7y
hardware v
test driver
(a) (b)

Fig. 1. normal situation (a) and testing situation (b).

provide an abstraction of a model of the hardware.

While testing, the software to be tested (the sys-
tem under test or SUT) is controlled by a test driver.
The test driver is responsible for executing the tests
and verifying their outcome. To make the SUT ready
for execution, it is extended with festing extensions
which change the SUT’s abstractions of the hardware
into abstractions of the hardware models, making the
SUT independent of the hardware on which it nor-
mally depends (figure 1b). These hardware models
then provide the SUT with its inputs. They in turn
receive directions from the simulated world in which
they operate. The simulated world is maintained by
the test driver, which can be customized to suit the

SUT.

The test driver program provides a framework in
which the simulated world can be created and scenar-
ios can be generated and, if applicable, recorded and
played back. Tests can be verified by comparing the
outcome against the outcome dictated by the scenario
or by checking the system’s behavior against sets of
invariants and postconditions. These conditions can
apply to the SUT, parts thereof, or parts of the sim-
ulated world.

An important advantage of modeling the hardware
purely by software is that this enables modeling at
higher levels of abstraction than plain interfaces. Fur-
thermore, the hardware models only need to be as
good as necessary to achieve the testing goal. For ex-
ample, when doing basic transaction testing on an el-
evator control, only the scheduling subsystem is being
tested and timing information can be safely omitted
from the models. Only when the tests are extended to
include information on, for instance, time to service,
the models must take into account the time it takes
for the cage to move and for passengers to enter and

exit. In effect this means that the testing models can
be developed in parallel with the system: new mod-
els can be included as each subsystem is implemented
and existing models can be refined when the testing
needs increase.

It is possible for the outcome of tests to not be verifi-
able by observing the behavior of the hardware mod-
els. In such cases the testing extensions must include
functionality to observe the SUT’s internal state. Fur-
thermore, they are also necessary to set the SU'l"s
state at the start of a test. They should of course not
alter the system’s behavior as that would invalidate
the test results or, even worse, violate the truthfulness
of the tests.

It is important to note that the testing extensions
are not an inherent part of the system’s functionality.
These extensions are absent during normal operation,
and must therefore not be part of the system’s design.
If they were, they would unnecessarily increase the
complexity of the system’s specification. This obser-
vation signifies the difference between design for test
(DfT) for hardware and for software: with hardware
DfT, specific facilities must be incorporated into the
design to, for instance, gain access to the hardware’s
internal state, whereas with software, access is essen-
tially unrestricted, were it not for the specification
language or paradigm used.

The target machine on which the control software is to
run might not be capable of supporting the software
with the testing extensions. The testing process must
therefore be independent of the machine on which it
is performed. To support real time testing, the test
driver must support distinctive notions of elapsed real
time, elapsed simulated time, and elapsed CPU time.
With simulated time being unrelated to elapsed real
time, simulated time can be sped up to decrease the
real time needed to run the tests, and it can be slowed
down if time is needed to compute (part of ) the hard-
ware model. Since the testing process is independent
of the machine on which testing takes place, a suit-
able machine can be chosen on which, for instance,
coverage and profiling tools are available.

1II. FACILITIES

To support the testing method outlined above, we de-
fine the following requirements:
1. a test driver which provides an extensible sim-
ulated world, and control of and communication
with the SUT and its testing extensions,



2. a framework to support testing extensions and
their interaction with the test driver,

3. the possibility to extend the control software so
as to make it suitable for execution under the test
driver, i.e. to change the hardware abstractions
into abstractions of models of the hardware, and

4. the possibility to extend the software in order to
make its internal state available to the test driver,
and to have the driver set the system’s state.

Points 3 and 4 basically state identical requirements:
the possibility to extend a program without those ex-
tensions being part of the program’s design. If this ex-
tensibility does not require recompilation of the orig-
inal program, it offers some interesting advantages:

o older versions of the program can be tested
against the latest test extensions without need-
ing to retrieve and compile the old version of the
sources, and

o testing extensions can always be developed and
applied, even in case (part of the) source code is
unavailable.

IV. LANGUAGE

In support of the proposed testing method, we have
designed and implemented TOM: an object oriented
programming language in the spirit of Objective-C [2]
and Java [3] (ante factum), which supports the testing
paradigm described in this paper. To this end, TOM
provides the following facilities:

o classes are extensible entities: a class is fully de-
fined by its main definition and any extensions
defined for it,

¢ an extension can add and replace methods. In
support of complex added behavior, an extension
can add instance variables. To promote object
reuse, an extension can introduce additional su-
perclasses, and

o extensions can be added to a program at compile,
link, or run time.

We will not further discuss ToOM here; the interested
reader is referred to [4].

V. AN EXAMPLE

An example application of the testing method out-
lined in this paper is that of an elevator control. This
is a rather simple application, without any hard real-
time constraints. It does not require a very strict no-
tion of simulation time to be tested, implying that the
test driver can be simple.

The elevator control program is designed to control
n systems, where system 7 controls /; elevators that

act as a group to service f; floors; every elevator can
service every floor.

The elevator control interacts with the system
through various input and output devices. The input
devices are all switches, the following types of which
can be discerned.

request 'I'wo switches on each floor, except the top
and bottom one, to request traveling up or down.
The bottom and top floors each have only a single
request switch. A request switch is pushed by a
user who wants to travel in the indicated direc-
tion.

destination Every elevator has a destination switch
for each floor. The user employs these switches
to indicate the floor to which he wants to travel.

guidance Every normal floor has three guidance
switches: one at the precise location of the floor,
one just above, and one just below. When the first
switch is pushed, the elevator doors can be safely
opened. The other two switches announce a floor,
allowing the cage to slow down before arriving at
a floor.

limit Each end of an elevator shaft has a limit
switch. These switches are supposed never to be
activated.

In the output direction, the system controls:

displays the information displays in each elevator
and on every floor, and
engines the engine of each elevator.

A. Design

The design of the elevator system is rather straightfor-
ward, given the preceding description of the hardware.
The only addition to the following class descriptions
is implicit information about the implementation of
the scheduler.

System A System is a group of elevators. Each
System maintains a set of Elevator objects and
a set of Floor objects. A request from a floor is
handled by the system, which dispatches it to an
idle elevator when available. Requests that can
not be immediately dispatched are stored, with a
separate set for each direction.

Floor A Floor is a placeholder for the switches and
displays present on each floor in the system. Each
floor also maintains the status of the up and down
requests on that floor. Basically, this is a copy
of information also stored elsewhere. The redun-
dancy in this case is, however, easy to maintain
and helps checking the consistency between the



state of the world between various parts of the
system.

Flevator An Elevator is the placeholder for the
switches and displays it contains. An elevator
travels in some general direction, servicing floors
as indicated by the set of requests it maintains,
plus any floor it passes that has a pending request
at the system, which has not yet been assigned to
an Elevator.

FEngine Each Elevator has one Engine which ab-
stracts the actual engine that moves the elevator’s
cage.

Switch To the software all switches are equal; they
are instances of the Switch class. No subclasses
are needed for different purposes, since to inform
the appropriate object of a state change, the tar-
get /action paradigm as employed in OpenStep [5]
is used. Using this paradigm, the target can be
any class, without restricting the switch/target
interface to certain methods or requiring a spe-
cial switch subclass for each different target and
action.

Display Every display in the system is represented
by a Display object. The system does not differ-
entiate between various physical displays.

The elevator control interacts with the hardware
through a binary bidirectional stream: a high-level
representation of a network used to communicate with
the actual hardware. Incoming events are interpreted
by a parser and dispatched to the appropriate hard-
ware abstracting object. In the other direction, com-
mands are issued onto the stream only from specific
methods of the appropriate hardware abstractions. It
is obvious that this interaction with the hardware is
not totally realistic, but targeted at testing this ‘vir-
tual’ interface from a tty.

B. Testing

In the testing situation the classes in the elevator con-
trol are modified to not rely on the actual hardware.
This means that any interaction with the hardware
and the bidirectional stream modeling the network is
suppressed. Furthermore, a simulated world is main-
tained with the following properties:

o An elevator cage travels at constant speed, with
infinite acceleration and deceleration.

e The virtual world is inhabited by virtual persons.
These persons can travel by elevator; they issue
commands to the system by operating the desti-
nation and request switches.

To create the simulated world in which to run the
tests, the testing extension modifies the program’s
classes in the following way:

e The Engine class is modified to incorporate the
model of the moving cage. This model is re-
sponsible for triggering the guidance and limit
switches, a function normally performed by the
event parser.

e The Elevator and Floor classes are modified
maintain a set of persons as observer; they are
informed of events concerning the entity they ob-
serve, such as the arrival of an elevator at a floor.

¢ A new Person class is introduced, to model the
persons inhabiting the simulated world. They can
observe a floor or elevator, and command them by
pushing request and destination switches.

e Most of the functionality of the Display class is
disabled, i.e. replaced with empty methods, the
reason being that we’re not interested in them in
the testing situation.

e Some methods are added to various classes to
make their inner state available for inspection or
modification.

In this example the test driver is fully contained in
the testing extensions added to the program during
testing. When, in the future, this testing method has
been further developed, the test driver will be a sep-
arate, extensible, program. It will maintain the sim-
ulated world; the testing extensions of the SUT will
be primarily concerned with communication with and
making the internal state available to the test driver.

Activity in the simulated world is initiated by the per-
sons inhabiting it. All activity is event based. For
example, the moving cage hitting a switch is an event
that is inserted, while processing the previous event
concerning the cage’s motion, into the event queue to
occur at the appropriate moment in time.

The event dispatching mechanism is based on the
TOM standard library event handling classes RunLoop,
which monitors file descriptors, and Timer, which can
be scheduled with a RunLoop to perform a method
invocation at some moment in time.

In the testing situation, the elevator control program
runs on a machine that is not necessarily identical to
the machine used in the normal situation. A reason
for this deviation can be the unavailability of testing
tools such as a coverage analyzer on the original tar-
get platform, or simply because a UNIX machine has
more to offer to the tester/developer than an embed-
ded system.



With the test driver used in this example, any dis-
crepancy in CPU speed, not to mention the overhead
of the test driver itself, directly influences the pro-
gram’s execution speed: because elapsed real time
and simulated time are synchronous, this also affects
the program in simulated time. Any accurate deep
sub-second simulation of the real world is therefore
impossible. The unpredictability of CPU scheduling,
for instance when a UNIX machine is used to run the
tests, further increases this problem.

Fortunately, we do not require a very strict notion
of time, since the precise timing of events is of no
importance to the elevator control; their order is what
really matters. Unfortunately, however, the variation
of time means that an event trace can not be used
to test the outcome of a test run: when an entity in
the testing situation schedules an event to happen at
some moment in time relative to the current moment,
any variation in ‘the current moment’ for successive
runs, can change the order of events, rendering a trace
useless.

The proper execution of test runs of the example is en-
sured by condition checks. The location of the checks
vary: some checks are done by method preconditions
and postconditions; other checks are performed by ex-
plicit code in the testing extension.

If none of the checks fails during a run, the system
has performed satisfyingly. Obviously, satisfaction is
only as good as the checks.

C. Test execution

As described in a preceding section, event dispatching
in the test driver is done by the event dispatcher as
provided by the standard library. This reuse is con-
venient, were it not that this setup binds simulated
time to elapsed time, making a test run simulating a
day actually take a day to run. This is not accept-
able, especially since the CPU can be observed to be
almost idle during that time.

A solution to this problem follows from the observa-
tion that the elevator system in the testing situation
is a closed system, interacting with its environment
only to issue errors or similar messages; no input is re-
ceived from the environment, not even a file is read. It
is therefore safe to modify the event dispatcher to, in-
stead of waiting, immediately continue execution after
having changed the program’s notion of time accord-
ingly. Various runs of this setup show a reduction in
elapsed real time by a factor of up to 2100 for a single
elevator 10 person 10 floor situation, with the ‘aver-

age’ speedup being a factor of 600, e.g. for a 4 elevator
20 person 20 floor simulation?.

VI. CONCLUSION

In this paper we have sketched a method and support-
ing development environment that enables testing of
embedded system control software independent of the
hardware with which the software normally commu-
nicates. Initial tests of the method are promising,
and further investigation into its applicability will be
performed. Future work will include the development
of a test driver and testing framework, to ultimately
provide a solid development and testing base.

REFERENCES

[1] Boris Beizer, Software testing techniques, Van Nostrand
Reinhold, 1990.

[2] NeXT Software, Object oriented programming and the
Objective-C language, Addison-Wesley, 1993.

[3] James Gosling, Bill Joy, Guy Steele, The Java language spec-
ification, Addison-Wesley, 1996.

[4] Pieter J. Schoenmakers, The TOM programming language,
http://tom.ics.ele.tue.nl:8080/.

[5] NeX'T' Software, The OpenStep specification, 1994.

®Tests were run on a 180MHz PA-8000 inside a HP9000/879.



