
The TOM Tome

Pieter J. Schoenmakers
Programmers Without Deadlines

Eindhoven, the Netherlands

$Revision: 1.24 $
$Date: 2001/04/08 22:04:28 $

The TOM Tome
by Pieter J. Schoenmakers

Published $Date: 2001/04/08 22:04:28 $
Copyright © 1999 by Pieter J. Schoenmakers

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are

preserved on all copies.

Permission is granted to process this file through DocBook and type-setting tools and print the results, provided the printed document carries

copying permission notice identical to this one except for the removal of this paragraph (this paragraph not being relevant to the printed

manual).

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the

entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified

versions, except that this permission notice may be stated in a translation approved by the author.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that

the section entitled “GNU General Public License” is included exactly as in the original, and provided that the entire resulting derived work

is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified

versions, except that the section entitled “GNU General Public License” may be included in a translation approved by the Free Software

Foundation instead of in the original English.

Table of Contents
Preface...10

I. TOM: The Language ..11

1. Getting started...12
Hello, world!..12
From source to running program...13

2. Expressions...15
Numeric constants...15
Operators...16
Local variables...18
Loops...19
More operators...21
Conditionals...22

3. Methods...24
Definitions...24
Tuples..25
Return values...28

4. Basic types..30
Numeric types..30
The boolean type...31
The pointer type...31
The selector type..31
The void type...31
The dynamic type..32
Object type...32
The id type...33
Tuple types...34

5. Classes...36
Inheritance...36
Object variables...37

Qualifiers..38
mutable...38
obsolete...38
private...39
protected...39
public..39
static...39
local..39
redeclare...39

Method overriding...40
Messagingsuper ..40
Object allocation and initialization..41
Object destruction..43

3

Polymorphism..43
A class is not atomic..44
Multiple inheritance...45

Semantics...45
Messaging super...46

Special classes...47
Collections...48

6. Advanced topics..49
Blocks..49

Basics...49
Theeval method...52

Conditions..53
Non-local gotos..53
Issuing conditions..54
Condition handlers...55
unwind ...57
signal example..57

Glueing TOM and C..59
C functions for TOM methods...59
Selector names...60
Type names..61
External implementation..62
The hack...63

Interaction with the Garbage Collector...64
Method forwarding..64

Forwarding mechanism..64
Speed..66

II. TOM: The Libraries ..68

7. The TOM Runtime Library...69
Program startup...69
C names for TOM types..69
Selectors..70
Message dispatching..71

Messaging from C..73
More types...74

struct name...74
trt_selector_args...74
enum trt_type_encoding...74

Functions...75
byte_string_with_c_string ..75
byte_string_with_string ..75
trt_assign_local_var ..75
trt_assign_object_var ..76
trt_ext_address ...76

4

trt_selector_args_match ..76
trt_selector_named ...77
trt_type_name ...77
xmalloc ..77

8. Unit tom ..78
File tom/All ...78
File tom/Array...85
File tom/Bag..86
File tom/Block...87
File tom/BucketDictElement...90
File tom/BucketElement..92
File tom/BucketIntDictElement...94
File tom/BucketPDictElement...96
File tom/BucketSetElement...97
File tom/Bundle...99
File tom/ByteArray..101
File tom/ByteStream..103
File tom/ByteString...104
File tom/ByteSubstring..108
File tom/C..111
File tom/CharArray...112
File tom/CharEncoding...113
File tom/CharString...120
File tom/Condition...122
File tom/ConditionClass..124
File tom/Conditions...125
File tom/Cons..127
File tom/Constants...130
File tom/DCons...133
File tom/Date...137
File tom/Descriptor..142
File tom/Dictionary...143
File tom/DoubleArray...146
File tom/EqDictionary...147
File tom/EqHashTable...148
File tom/EqSet...149
File tom/Extension...150
File tom/File..152
File tom/FloatArray...156
File tom/HashTable..157
File tom/Heap..161
File tom/HeapElement...164
File tom/IntArray...165
File tom/IntDictionary...166

5

File tom/IntegerRangeSet..167
File tom/Invocation..173
File tom/InvocationResult...177
File tom/Limits..179
File tom/Lock..180
File tom/MutableArray..184
File tom/MutableByteArray..186
File tom/MutableByteString..189
File tom/MutableCharArray..190
File tom/MutableCharString..191
File tom/MutableDoubleArray..191
File tom/MutableFloatArray..193
File tom/MutableIntArray...194
File tom/MutableObjectArray...196
File tom/MutablePointerArray..197
File tom/MutableString...199
File tom/Number...199
File tom/ObjectArray...202
File tom/Pointer...204
File tom/PointerArray..206
File tom/PointerDictionary..207
File tom/Queue..207
File tom/Random...210
File tom/RandomDouble...212
File tom/Runtime...219
File tom/Selector...228
File tom/Set...230
File tom/Sorted..231
File tom/State...236
File tom/StreamBuffer...240
File tom/String...242
File tom/StringStream...247
File tom/Thread...248
File tom/Trie..249
File tom/TypeDescription..252
File tom/Unicoding..253
File tom/Unit...255
File tom/XL...256
File tom/archiving..259
File tom/behaviours...265
File tom/coding..270
File tom/collections...286
File tom/config...297
File tom/holes..297

6

File tom/numbers...299
File tom/streams..314
File tom/unique-strings..320

9. Unit C ..323
File C/Math..323
File C/Std...326

10. Unit too ..328
File too/AutoLock...328
File too/Connection...329
File too/DescriptorDelegate...334
File too/DescriptorSet..334
File too/PortCoder...336
File too/PortDecoder...337
File too/PortEncoder..337
File too/Proxy..339
File too/RunLoop...343
File too/Timer..345
File too/inet..347
File too/network...353
File too/ports..353
File too/Nameserver..354

11. Unit_builtin_ ...357
Any ...357
Any ...357

III. Reference...358

I. Tools man pages...359
tesla..360
tig...362
tug..363
gp...363
tomc...365

IV. Appendices..366

A. TOM makefiles...367
Basics...367
Important macros...367
Targets...368
More macros..368
Secondary GNUmakefiles...369
Environment Variables..370

B. GNU General Public License...372
Preamble..372
GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION ..372

7

Appendix: How to Apply These Terms to Your New Programs...................................376
Glossary..379

8

List of Tables
2-1. Numeric types..15
2-2. Important non-printable characters...16
2-3. Operators...17
2-4. Examples of>>> and-> ...18
6-1. type encodings...60
6-2. C types for TOM types..62
6-3. Speed of method invocation..66
7-1. C names for TOM types..70
7-2. Selector type encodings...70
7-3. Example selector name encodings..71

9

Preface
This book accumulates the information that I have written about TOM in the past four years. That’s
exactly four years, as I happen to be writing this preface on 16 November 1999, TOM’s fourth birth-
day.

The TOM Tomeis written in DocBook. When it is finished, I expect to know a lot about DocBook. At
the moment, all I know is that it appears to be a good decision.

In its current form, this book needs an editor’s hand. However, my priority is to get all the information
in, instead of presenting it in a pleasant way. Having all the information in one place already offers
much progress over the previous situation where information was dispersed in many locations.

Eindhoven, 16 November 1999

Pieter Schoenmakers <tiggr@gerbil.org >

10

I. TOM: The Language
This first part ofthe TOM Tomeintroduces the TOM language and its use. We touch on the libraries,
which are given a thorough treatment in the second part.

Chapter 1. Getting started

Hello, world!
This is the famousHello, world! program, in TOM this time -- the line numbers are for clarity; they
are not present in the actual source:

1 implementation class HelloWorld
2
3 int
4 main Array argv
5 {
6 [[[stdio out] print "Hello, world!"] nl];
7 }
8
9 end;

10
11 implementation instance HelloWorld end;

The first line denotes the start of the implementation of a class namedHelloWorld . The class ends
with theend; at line 9. Between these lines amethodis defined.

A method is a piece of code associated with an object. In this case the object is theHelloWorld class
object. The method we define is calledmain . It returns a value of type int and accepts one argument
of type Array. The name of the argument isargv ; the code within the method can refer to the value
of the actual argument through the nameargv .

Line 6 contains three nested bracketed expressions; each expressionsends a messageto an object.
The inner expression is[stdio out] . Here, the argumentlessout message is sent to thestdio

class object; this object is thereceiverof the message. In response to this message, the corresponding
method will be invoked, in this case theout method of thestdio class. Because of this correspon-
dence, the termssending a messageand invoking a methodare synonyms and they will be used as
such throughout this book.

The out method of thestdio class returns anOutputStream object to which information can be
written. This stream is usually connected to the user’s terminal. Execution of themain method will
resume when theout method has returned.

If we call the result of the first method invocationx , the second expression becomes:

[x print "Hello, world!"]

This sends to the objectx the messageprint with a single argument, the string ‘Hello, world!’. The
stream object will print the string on the user’s terminal and return itself. The third method invocation
thus becomes:

[x nl]

12

Chapter 1. Getting started

In response to this, the stream object will flush any buffered output to the user’s terminal and emit a
new-line character. Like theprint method, it returns itself. This value is ignored here.

In line 7, the method body ends. We did not indicate a return value, so the default value is returned: 0.

In line 11 the instances of theHelloWorld class are descibed. Since we have no use for them in this
example, the definition can be empty.

From source to running program
The easiest way to get our program running is by creating aGNUmakefile with the following con-
tents:

UNIT= hello
TOM_SRC= hello

TOM_MAKEFILES_DIR= /usr/lib/tom/makefiles
include $(TOM_MAKEFILES_DIR)/GNUmakefile.bin

This GNUmakefile assumes that our program source is contained in the filehello.t and that
our executable program will be calledhello . Furthermore, it assumes that the TOM Makefiles
(see Appendix A) are available in/usr/lib/tom/makefiles ; adjust the definition of the macro
TOM_MAKEFILES_DIRif their location on your machine is different.

If we now runmake, output will be similar to this (what appears here has been edited to fit better):

* [In the preceding paragraph, using <command>make</command> results inmake, which is rather ugly.]

$ make
/usr/local/lib/tom/makefiles/GNUmakefile.common:168: GNUmakefile.link: No such file or directory
building GNUmakefile.link...
if test -z "yes"; then touch GNUmakefile.link; else \

/usr/local/lib/tom/makefiles/genlinkfile -o GNUmakefile.link \
\
-I /usr/local/lib/tom -I /usr/local/lib/tom tom; \

fi
using unit tom from /usr/local/lib/tom/tom
test -f hello.u || \

tug -u hello -U tom hello.t
time tesla -freadable-c :cc-pre :cc-post -1 \

-u hello -I . -I /usr/local/include -I /usr/local/lib/tom
Number of units: 3
Loading unit tom...
Loading unit hello...
Preparing unit _builtin_...
Preparing unit tom...
Preparing unit hello...
1.94user 0.08system 0:02.82elapsed 71%CPU (0avgtext+0avgdata 0maxresident)k

13

Chapter 1. Getting started

0inputs+0outputs (625major+665minor)pagefaults 0swaps
touch .stamp-prepare
/usr/local/lib/tom/makefiles/libtool --mode=compile gcc -g -O2 -I /usr/local/include -
I /usr/local/lib/tom -I . -c hello.c
rm -f .libs/hello.lo
gcc -g -O2 -I /usr/local/include -I /usr/local/lib/tom -I . -c -fPIC -DPIC hello.c -
o .libs/hello.lo
gcc -g -O2 -I /usr/local/include -I /usr/local/lib/tom -I . -c hello.c -o hello.o >/dev/null 2>&1
mv -f .libs/hello.lo hello.lo
/usr/local/lib/tom/makefiles/libtool --mode=compile gcc -g -O2 -I /usr/local/include -
I /usr/local/lib/tom -I . -c hello-r.c
rm -f .libs/hello-r.lo
gcc -g -O2 -I /usr/local/include -I /usr/local/lib/tom -I . -c -fPIC -DPIC hello-
r.c -o .libs/hello-r.lo
gcc -g -O2 -I /usr/local/include -I /usr/local/lib/tom -I . -c hello-r.c -o hello-
r.o >/dev/null 2>&1
mv -f .libs/hello-r.lo hello-r.lo
TOM_MAKEFILES_DIR=/usr/local/lib/tom/makefiles /usr/local/lib/tom/makefiles/libtool -
-mode=link \

gcc -L/usr/local/lib hello.lo hello-r.lo -L/usr/local/lib/tom/tom -
ltom -ltrt \

-ldl -lpthread -l_builtin_ -o hello
gcc -L/usr/local/lib hello.o hello-r.o -L/usr/local/lib/tom/tom -ltom -ltrt -
ldl -lpthread -l_builtin_ -o hello

* [Briefly explain every command and its use.]

Now our program has been built, we can run it:

$./hello
Hello, world!

Of course, since we are using make, we can change our programhello.t as much as we want and
all we need to do to rebuild it is runmake again.

14

Chapter 2. Expressions
In the previous chapter you’ve seen how a TOM program is built from files, which contain classes and
instances, which contain methods. This chapter explains the basics of methods, what you can make
them do, and how to write that down in TOM.

Everything in a method body is an expression. We’ll start with the simplest kind of expression: con-
stants.

Numeric constants
An example of a rather simple expression is1 + 2 . When executed its value is3, just like you’d
expect. Both the1 and2 themselves are expressions too. They are the simplest of expressions, and
calledconstants. As with all expressions, constants have a type. The type of1 is int.

int is one of the numeric TOM types. Table 2-1 lists all numeric types available in TOM. If you’re
familiar with C, you’ll recognize most of them. The difference is that in TOM the precision, range
and signedness of the types are fully defined: there is no difference between machines. Furthermore,
the char and short C types have been replaced by byte and char respectively, for reasons which will
become apparent soon.

There are several kinds of numeric constants, each with a specific type. Constants like1, 123456 ,
0377 , and0xff are of type int. A leading zero, as in0377 , denotes a number in octal notation;0xff

with its leading0x denotes a number in hexadecimal notation. The case of the hexadecimal digits is
ignored, thus0Xff , 0xFf , 0XFF, and0xff are all equal.

Table 2-1. Numeric types

type description

byte 8 bit unsigned integer

char 16 bit unsigned integer

int 32 bit signed integer

long 64 bit signed integer

float single precision floating point

double double precision floating point

An integer constant suffixed withl or L is of type long. Thus0L is a 0 typed long. If an integer
constant, which is not an explicit long, is too large to be held by an int, its type will be long. If even a
long can not hold the value, an error is issued by the compiler.

A byte constant is written as a character enclosed in single quote characters. Thus,’a’ is a byte with
a value of 97; 97 being the ASCII value of the letter ‘a’. The quote itself can be escaped using a ‘\’
(backslash). Thus,’\” is a byte with a value of 39. To get a backslash, it too must be escaped---’\\’ .

15

Chapter 2. Expressions

Not all byte values can be entered as a character constant, simply because not all ASCII values trans-
late to printable (and typeable!) characters. Such characters can be entered by escaping their octal
value. Thus,’\041’ is the capital letterA.

In general, it is awkward to have to remember numeric values for often-used non-printable characters.
Table 2-2 lists the shorthands of important character constants which stand for some of the unprintable
ASCII values.

Table 2-2. Important non-printable characters

constant value name description

’\b’ 0x08 BS backspace

’\f’ 0x0c FF form feed

’\n’ 0x0a NL new line

’\r’ 0x0d CR carriage return

’\t’ 0x09 HT tab

’\v’ 0x0b VT vertical tab

A float constant is a number which includes a decimal point, an exponent, or both. Thus1.0 , 1e23 ,
and4.2e1 are all floating point constants of type float.

Floating point constants of type double must have an exponent part and have ‘d’ as the exponent
indicator. Thus1d is a floating point 1 of type double.

A floating point constant which seems to be a float, but the value of which is too large to be held by
a float, is also taken to be a double. If the value of a constant is too large to even fit a double, the
compiler will issue an error.

Operators
Expressions are composed of operators and operands. Operators come in three flavours: with 1, 2, or
3 operands. Each operand in turn is an expression.

Each operator has a priority. For instance, the priority of the* is higher than that of+, causing1 +

2 * 3 to be interpreted as first multiplying2 by 3 followed by the addition of1. Parentheses can
be used to impose a different evaluation order:(1 + 2) * 3 will first add 1 and2, multiplying the
result with3.

You can experiment with expressions by modifying thehello.t program to print something different
from its familiar message. Here are a few examples; remember to runmake to have the program rebuilt
after you have modified the source.

[[[stdio out] print 1 + 2 * 3] nl];
[[[stdio out] print (1 + 2) * 3] nl];

16

Chapter 2. Expressions

And a more daring example---notice howprint accepts more than one thing, grouped by parentheses
and separated by commas.

[[[stdio out] print ("0 F = ", 5.0 / 9.0 * (0.0 - 32.0), " C")] nl];

Table 2-3 lists all operators. Operators nearer to the top have a higher priority than those below it. In
the same group, between horizontal lines, operators have the same priority.

* [Horizontal lines have disappeared.]

Table 2-3. Operators

operator arity associativity description

++, -- 1 right increment, decrement

-, ~, ! 1 right version, not

*, /, % 2 left multiply, divide, modulo

+, - 2 left add, subtract

<<, >> 2 left arithmetic shift

>>> 2 left logic shift right

& 2 left bitwise and

| 2 left bitwise or

^ 2 left bitwise exclusive-or

<, <=, >=, > 2 left ordered comparison

==, != 2 left equality comparison

&& 2 left boolean and

|| 2 left boolean or

-> 2 left implies

?: 3 right if-then-else

=, etc. 2 right assignment (see text)

The unary minus returns the negation of its numeric argument. Thus, evaluating any of the expressions
-1 , -(1) , and-(2 - 1) all return the value -1. Negation preserves the type of its argument: negating
an int value results in another int value.

The bitwise inversion operator,~, returns, given an integer numeric argument, an integer numeric
value of the same type, but with all 0 bits replaced by 1 bits, and vice versa. Thus,~0 returns -1.

The boolean not operator,! , returnsFALSE iff its operand has the default value for its type, andTRUE

otherwise. For example, the default value of numeric types is 0, so!0 will return TRUEand!456 will
returnFALSE.

The value returned by! has the boolean type. The only values of this type areTRUEandFALSE, also
known asYESandNO.

17

Chapter 2. Expressions

Apart from >>> and-> the binary operators perform the same function as their C, and many other
languages, equivalents.>>> shifts a signed number in the same way as>> shifts an unsigned number in
C. The implication operator,-> , performs the boolean implication:a -> b is equivalent to!a || b .
Table 2-4 shows a few examples of their use.

Table 2-4. Examples of>>> and ->

expression result

128 >> 1 64

-1 >> 1 -1

-1 >>> 1 0x7fffffff

TRUE -> FALSE FALSE

TRUE -> TRUE TRUE

FALSE -> TRUE TRUE

FALSE -> FALSE TRUE

The operators* , / , +, - , <, <=, >=, and> operate on any numeric type. The%, <<, >>, >>>, &, | , and
^ operate on integer numeric types.&&, || , and-> operate on the boolean type. Furthermore,== and
!= operate on any type, including those to be introduced later on.

All binary operators are left associative, except the assignment operators,=, +=, etc., which is right-
associative. The order of evaluation of the operands follows the associativity of the operator. Thus,
1 + 2 + 3 is interpreted as(1 + 2) + 3 , and the3 is only evaluated after the addition of1 and
2---not that it makes any difference in this simple case. Furthermore,a = b = c meansa = (b =

c) . (We will return to the assignment operator later on---they aren’t much use now when constants
and operators are the only building blocks at hand.)

The boolean operators areshort-circuited. This means that if enough information is known about the
operands that the result of the whole expression is known the evaluation of any remaining operands is
skipped. Thus,FALSE && xreturnsFALSEwithout ever evaluatingx , since its value does not matter.

There is only one ternary operator,? : , also known as the if-then-else operator. To compute the
maximum ofa andb, one could usea > b ? a : b , meaning that ifa is larger thanb, the second
expression (in this casea) will be evaluated and returned as the result; otherwise the result of the third
expression (b) is the result of the whole expression.

In general, when used asx ? y : z , the type ofx must be boolean, and the type ofy must equal the
type ofz . Furthermore, only one ofy andz will be evaluated.

Local variables
It is often necessary to keep the result of an expression for later use. A good example of this is a
counter: if you count from 1 to 10, when you’re ready to go to the counter’s next value you must

18

Chapter 2. Expressions

know what its current value is. A local variable can be used to hold such values. For example, ifa is
a variable, then the assignment

a = 1;

will assign toa the value1. When followed by the expressiona + 7 , the result of that expression
will be 8.

As you will have guessed, each variable has a type. Before a local variable can be used, it must be
declared, not only to indicate its type but also to declare its existence. The variablea used above
would be declared as:

int a;

You can experiment with variables by modifying themain method of our example program again.

int
main Array argv

{
int a = 11, b = 6;

[[[stdio out] print ("a = ", a, " b = ", b)] nl];
int c = a * b;
[[[stdio out] print ("a * b = ", c)] nl];
c = a + b;
[[[stdio out] print ("a + b = ", c)] nl];

return 0;
}

This example shows that multiple variables can be declared in one declaration, and that an assignment
to a variable can be included in its declaration. In fact, when such an initial value is omitted, the
variable will be set to0. Verify this by omitting the initialization ofb (i.e., the ‘= 6’) from the
example and running the program again after rebuilding.

In general, if a variable declaration does not specify an initial value, the value of the variable will
be the default value of the variable’s type, e.g.,0 for numeric types andFALSEwhen the type of the
variable is boolean.

Loops
One of the more valued features of computers is their ability to repeat, and repeat often. Theloop is
the crucial language construct underlying concept. Would you like to compute the conversion table
from Celsius to Fahrenheit for every value between -100 and 100? Here’s how to automate that.

int
main Array argv

19

Chapter 2. Expressions

{
float celsius = -100.0;

while (celsius <= 100.0)
{

float fahrenheit = 32.0 + 9.0 / 5.0 * celsius;

[[[stdio out] print (celsius, " ", fahrenheit)] nl];
celsius = celsius + 1.0;

}

return 0;
}

Thewhile loop tests its condition, in this case whethercelsius still is less than100.0 , and as long
as the condition is true, the expression following it is executed. This expression is called thebodyof
the loop. The loop condition is re-evaluated every time the body has been evaluated.

The example shows another noteworthy item: the body expression actually consists of a declaration
and two expressions, separated by semicolons (;) and enclosed in braces,{ and } }. Such an ex-
pression sequence between braces is called acompound expression. The type and value of such a
compound expression are the type and value of the last expression within the compound. This value
is not always used, like in this example.

Two other loop constructs are available, which basically are nothing more than a variation on the
while loop theme.

The first variation is thedo while loop. For example, the following code prints the numbers from0

to 9 (inclusive or exclusive?).

int
main Array argv

{
int counter;

do
{

[[[stdio out] print counter] nl];
counter = counter + 1;

} while (counter < 10);

return 0;
}

The difference with the plainwhile loop is that the condition is evaluatedafter the body has been
executed, i.e., the body is executed always at least once, whereas the body of thewhile loop can be
skipped if the loop condition evaluates toFALSEbefore the body would be entered for the first round.

20

Chapter 2. Expressions

The third, and last, loop variation is thefor loop. Like thewhile anddo while loops, its syntactical
origins stem from C. Here is a Fahrenheit to Celsius converter for degrees between -100 and 100,
written down using afor loop.

int
main Array argv

{
float f;

for (f = -100.0; f <= 100.0; f++)
[[[stdio out]

print (f, " ", (f - 32.0) * 5.0 / 9.0)] nl];

return 0;
}

Thefor loop starts with three expressions, separated by semicolons. The first expression, in this case
f = -100.0 , is always executed. The second expression is the condition of the loop. If it evaluates to
TRUE, the body is evaluated, followed by the evaluation of the third expression,f++ , which increments
f by 1. Then the condition is re-evaluated, and, if it isTRUE, the body, and so on.

As has been stated at the start of this chapter, everything in a method is an expression. Obviously
then, loops also have a value. The value of a loop is the value of the body expression the last time it
was executed. If the body is never executed, as can be the case withwhile andfor loops, the value
returned is the default value for the type.

More operators
The last loop example showed an operator which was not yet introduced, namely++. Its effect is to
increment its operand,f in the example, by1. Similarly, f-- would decreasef by 1.

The increment and decrement operators can be used in a postfix notation, as in the example, or a prefix
notation, as in--f . The difference between these notations is the value returned by the expression.
The postfix notation returns the value of the variable before the modification; in prefix notation, the
value of the expression the new value of the variable.

Given the fact that the value of a compound expression is the value of the last expression contained in
the compound,f++ is identical to

{
int g = f;
f = f + 1;
g;

}

and--f equals

21

Chapter 2. Expressions

{
f = f - 1;

}

The last kind of operators to be introduced are the modifying assignment operators. For example,f =

f + x can be written asf += x . The same is true for every other binary operator. The precedence of
these operators is equal to that of the normal assignment (they are the ‘etc’ in Table 2-3).

Conditionals
Next to loops, conditional expressions are also important language constructs. The?: operator intro-
duced in the section calledOperatorsis an example of a conditional expression:if the condition is
TRUE, thenexecute what follows the?, elseexecute what follows the: .

This section introduces a semantically equivalent to the?: operator, but, as with a lot of TOM lan-
guage constructs, with a syntax pleasing the eye accustomed to C.

The following example shows the use of theif else construct.

int
main Array argv

{
int n = [argv length];

if (n == 0)
[[[stdio out] print "no arguments"] nl];

else
[[[stdio out] print (n, " arguments")] nl];

}

If this program is invoked without any arguments, the Arrayargv will not contain any elements, and
will return 0 when asked for itslength . Consequently, the program’s output will beno arguments .
When invoked with at least one argument, it will report the number of elements inargv , which is the
number of arguments.

When you have modified thehello program to have the abovemain method, the following is a
example of its output when run.

$./hello
no arguments
$./hello tiny little program
3 arguments
$./hello "little robot"
1 arguments

22

Chapter 2. Expressions

And thus we discover a bug in our program: the output when invoked with a single argument is wrong
since ‘1 arguments’ is not proper English. You are hereby challenged to fix this, armed with the
knowledge that what follows anelse is an expression, just like theif else is an expression.

In contrast to the?: operator, theelse branch of anif else conditional is optional. If the condition
evaluates toFALSE and theelse branch is missing, the value of the whole expression becomes the
default value of the expected type.

For example, after the following expressions, the value ofa will be 0.

int b = 3;
int a = if (b < 0) b;

23

Chapter 3. Methods
Now the basics of what can be put in a method have been explained we can move on to building new
methods.

Definitions
As was shown by themain method in the previous examples, a method has a name, argument types,
and a return type. The name can consist of more than a single part, in which case each part must
be followed by an argument---remember how theout method of thestdio class does not need any
arguments.

For instance, in the following example, the method’s name ismultiply by ;

int
multiply int a

by int b
{

return a * b;
}

This method accepts two arguments, each of type int, and returns another int. The body of the method
simply returns the result of multiplyinga andb.

Notice how every name part of the method starts on a new line, and that the nameparts are right
justified. This is considered a readable style of writing method declarations. It is much more readable
than written like this:

int multiply int a by int b { return a * b; }

To test ourmultiply by method we add it to the example program, between the start and the end of
the class implementation, and test it using the followingmain method:

int
main Array argv

{
int i, n = [argv length], result = 1;

for (i = 0; i < n; i++)
{

String s = [argv at i];
result = [self multiply result by [s intValue]];

}
[[[stdio out] print result] nl];

return 0;
}

24

Chapter 3. Methods

The receiver of themultiply by message isself . self is an implicit argument to every method;
it is the receiver of the message which caused invocation of the method. In this example,self is the
HelloWorld class object.

This example also shows the use of aString object, which is retrieved from the arrayargv . An
Array stores the objects it holds in a sequence, and using theat message, one can ask for the object
at a certain index, as long as the index is within range, in this case 0 <=index < [argv length] .

The full declaration of theat method is

Any
at int index;

That is, anAny object is returned and since we know it is aString , we are allowed to assign the
value returned to aString . In fact, as the nameAny suggests, we can assign anAny to a variable of
anyclass.

In the example, theString s is asked for itsintValue . intValue is a String method which
returns the integer value held by the string, in a straightforward way. For example, when asked for its
intValue , the string"123abc" will return 123,"abc" will return 0, and"0x123abc" will return
1194684.

It is customary for method name parts to use mixed case identifiers, starting with a lowercase letter.
Class names also follow the mixed case convention, but they start with a capital letter. Variables should
be all lower case, with the words within the identifier separated by ‘-’ or ‘_’.

When recompiled, thehello program will, when run, output the result of multiplying its arguments.

$./hello 23 2
46
$./hello
1
$./hello 123456789 98
-786136566

The program behaves as expected, apart from the last example. Two positive numbers, when mul-
tiplied should return a positive number. However, when 123456789 is multiplied by 98 the answer,
12098765322, is too large to fit a signed 32 bits value, which is the int used for theresult and
themultiply by method. Obviously, the problem can be shifted to the 64 bits limit by using long
values, but that is not a real solution; it is important that you realise the existence of such limits.

Tuples
There are occasions, when returning a single value from a method does not suffice, or when it is te-
dious to have multiple method name parts just to have multiple arguments. TOM solves both problems
through tuples.

25

Chapter 3. Methods

A tuple is a group of values within parentheses, separated by commas. For instance,(1, 3.14) is a
tuple. The type of a tuple is thetuple typeof which the elements are the types of the elements of the
tuple. The type of the example is (int, float).

An example of a method using tuples is thesubstring method from theString class.

String
substring (int, int) (start, length);

This method has a single argument, the tuple(start, length) . As with a lot of otherString

methods, this tuple is used to select a range of elements, starting at indexstart , and running for
length elements, where alength of -1 means infinity.

The following example program, when run, will show a running text, probably best viewed on a slow
terminal (of, say, 2400 baud).

int
main Array argv

{
OutputStream out = [stdio out];
String text = "Testing... 1 2 3", spaces = " ";
int len = [spaces length], finish = len + [text length];
int num = (![argv length] ? 100 : [argv[0] intValue]);
int i, count;

for (count = 0; count < num; count++)
for (i = 0; i < finish; i++)

{
if (i < len)

{
/* Case 1: Spaces followed by start of text. */
[out print [spaces substring (0, len - i)]];
[out print [text substring (0, i)]];

}
else if (i < finish - len)

{
/* Case 2: Start and end the line in the text. */
[out print [text substring (i - len, len)]];

}
else

{
/* Case 3: Text followed by spaces. */
[out print [text substring (i - len, finish - i)]];
[out print [spaces substring (0, len - (finish - i))]];

}
/* Go back to the start of the line. */
[out print ’\r’];
[out flushOutput];

}

26

Chapter 3. Methods

= 0;
}

As an example of a method returning a tuple, let’s look at using anEnumerator . An Enumerator

can be used to traverse a collection of objects. After asking the collection for anenumerator , the
method

(boolean, Any)
next;

can be used to repeatedly retrieve the next object. The value returned bynext is a tuple with a boolean
and an object. If the boolean isTRUE, the second element of the tuple contains the object retrieved.
Otherwise, if it isFALSE, the end of the collection has been reached.

The following program is an example of using this method.

int
main Array argv

{
Enumerator e = [argv enumerator];
Any object;

while ({
boolean valid;
(valid, object) = [e next];
valid;

})
[[[stdio out] print ("got one: ‘", object, ’\”)] nl];

return 0;
}

The example uses a compound expression as the condition of thewhile loop. This isn’t just to show
you this is possible; the tuple returned bynext can not be used as a boolean condition, and the
boolean must be repeated to give the compound its boolean value.

If the declaration ofvalid were not part of this compound (but put outside thewhile loop), the
condition could be written as

while ({(valid, object) = [e next]; valid;})
...

which is the common notation.

In addition to providing multi-valued returns, and a compact method argument notation, tuples pro-
vide a sometimes desirable feature of simultaneous assignment. The most obvious application thereof
is that of swapping the values of two variables:

(a, b) = (b, a);

27

Chapter 3. Methods

Return values
Up to now, returning from a method was always written usingreturn . This sets the value to be
returned and terminates execution of the method. Sometimes it is desirable to set the return value but
not immediately return from the method. Such constructions are common in languages which only
provide thereturn statement, and resemble the following code snippet:

{
...
int result = [self computation];
[self deallocateResources];
return result;

}

Using thereturn assignment, the return value of a method can be set, without causing immediate ter-
mination. A return assignment is written as an assignment with an empty left-hand side. The example
then becomes:

{
...
= [self computation];
[self deallocateResources];

}

which is much cleaner. It is customary to only usereturn when immediate termination of the method
is necessary. The return assignment is otherwise preferred.

When a method does not assign a return value, either throughreturn or a return assignment, the
value returned by the method will be the default value of the return type. Thus, the following two
method definitions are equal:

boolean
constantp

{
boolean v;
= v;

}

boolean
constantp

{
}

When a method returns a tuple the return value returned must be set atomically, i.e. it is only possible
to set all values in the tuple at once. There are situation where this is undesirable, and a solution to
this is provided bynamed return values.

In the following example, the return type is followed by a tuple of identifiers(valid, object) .
Each identifier denotes a local variable in the method, which is declared implicitly, and which is

28

Chapter 3. Methods

handled as a normal local variable. Upon return from the method, the value returned will be the tuple
(valid, object) . Intermediate assignments to any of these variables will have the expected result
of affecting the return value. Also, normalreturn and return assignment still operate as expected,
i.e. they will affect the value of these variables.

(bool, Any) (valid, object)
next

{
valid = [self haveMoreObjects];
if (valid)

object = [self getNextObject];
}

If one of the return value names is the name of an argument, be it the implicit receiver objectself

or the message selectorcmd or a normal argument, that part of the return value will correspond to the
value of the argument. The creation of a local variable is omitted in this case. The following method
for example simply returns the value passed to it:

int (value)
echo int value

{
}

Note that the return value name is enclosed in parentheses, i.e. a singleton tuple. Return value names
must always be a tuple, otherwise the compiler can’t discern between the name and the return value
or the first method name part.

A good reason to name the return values is that any documentation or comments about the method
can simply refer to parts of the return value by name.

29

Chapter 4. Basic types
TOM has three kinds of types: basic types, objects and tuples. Furthermore, there is one special
type, void, and there are two special type indications: dynamic indicates that the actual type will be
dynamically checked; and id which, in denotes anactualobject instead of the containing, declaring,
formal object.

entity_type:
basic_type

| tuple_type
| object_type
;

An entity_type is the possible type of an entity, such as an object variable, method argument or
local variable.

argument_type:
‘dynamic’

| entity_type
;

In addition to the usual types, an argument can have the dynamic type. The type actually passed will
be encoded in the selector of the method being invoked. It is the responsibility of that method to
retrieve the correct types as indicated by the selector.

return_type:
‘void’

| argument_type
;

The type of value returned by a method can be anything that can be the type of an argument, plus
void, indicating that the method will not return any value.

basic_type:
‘byte’ | ‘char’ | ‘int’ | ‘long’ | ‘float’ | ‘double’

| ‘boolean’ | ‘pointer’ | ‘selector’
;

Numeric types
TOM has two kinds of numeric types: integer and floating point. The integer numeric types are listed
in Table 2-1. In places where a numeric type is expected, a narrower numeric type of the same kind
is accepted and implicitly converted. Thus, a byte is acceptable as a char is acceptable as an int is
acceptable as a long; and a float is acceptable as a double.

The default value for the numeric types is zero.

30

Chapter 4. Basic types

The boolean type
The boolean type is used for truthness values. It is extensively used in conditional constructs. The
default value for the boolean type is falseness. The instance tom.All defines the following constants,
each with the boolean type.

const TRUE = !0;
const FALSE = !1;
const YES = TRUE;
const NO = FALSE;

Therefore, any class which uses these constants must minimally inherit from instance tom.All or
another class which does, such asState .

The pointer type
The pointer type is a rather abstract type. Values of the pointer type can not be operated upon; they
can only be passed around; their primary use is for the implementation of arrays, integrating with
foreign code, such as that written in C, and for debugging purposes. The default value for the pointer
type is the invalid pointer (NULL in C). Note that, within TOM proper, it is impossible to refer to the
constant null pointer.

The selector type
A selector is an abstract entity holding a name and typing information. A method invocation, also
know as ‘sending a message to an object’, actually is the invocation of some behaviour identified
by the object receiving the message, and the name of the message: the selector. The second part
of a message are the arguments to the method. A selector is a name and typing information on the
arguments carried by a message and return value expected by the sender of the message. Every method
implementation has, as the second implicit argument the selector,cmd, used to invoke the method’s
behaviour.

The default selector value denotes the non-existing selector. The only operations defined on selector
typed values are equality comparisons.

The void type
The void type is a special type: it indicates the absence of a value. Its most profound use is in typing
the return value from methods; another use is as an expression where an expression is not needed but
also not allowed. void is the only one void-typed value; no operations can be performed on void; and
there is no default value for the void type.

31

Chapter 4. Basic types

The dynamic type
A method which is implemented outside TOM (say, in C) can have a dynamic return type and dynamic
argument types. A dynamic type implies anything can be passed and will be accepted. The type of
the value actually passed to the method is encoded in the selector, which the method receives as the
implicit second argument (afterself). Similarly, the method implementation can deduce the expected
return type from actual selector. The dynamic type is used by, for instance, theperform : method,
which is defined as

extern dynamic
perform selector sel

: Array arguments = nil;

If perform : is invoked as

int a, b, c;

(a, b, c) = [foo perform bar]

then it would be a (fatal) runtime error if the selector denoted bybar did not return a tuple of three
integers.

Object type
Objects are the only way in TOM to create an aggregate value---there is no such thing as a struct.

• All objects---classes and instances---share the sametype. Obviously, the compiler can tell a differ-
ence between aNumber and aByteArray , so not all objects are of the samekind.

• A variable with an object type actually is a reference to an object. All objects are allocated from a
heap.

• In the rest of this document, often the type of an expression or entity is referred to. In most cases,
this means the type of the value, or the kind of object if the type is the object reference type.

The default value of an object-typed variable is the invalid reference,nil . The type ofnil is _builtin_.Any.
Messagingnil results in the conditionnil-receiver being raised.

object_type:
class_name

| ‘id’
| ‘class’ ‘(’ object_type ‘)’
| ‘instance’ ‘(’ object_type ‘)’
;

32

Chapter 4. Basic types

The plainobject_type is aclass_name ; this indicates theinstanceof the indicated class. id indi-
cates the type of the actual receiver. The variation with a ‘class’ or ‘instance’ shifts the meta level into
the specified direction. Examples:

Foo

A reference to an instance ofFoo (or an instance of a subclass ofFoo).

class (Foo)

A reference to theFoo class object (or the class object of a subclass ofFoo).

instance (id)

A reference to an instance of the current receiver. Obviously, it is an error if the current receiver
itself is an instance, since instances do not have instances.

class (id)

A reference to the class object of the current receiver. For the current receiver being an instance,
it denotes the class object; for a class it denotes the meta class object. For meta class objects, it
denotes the meta class object of theState class.

As the receiver of a method invocation, aclass_name denotes the class object.

The id type
The id type is not an actual type. In the context of an object definition, id is identical to the current
class or instance being defined, in contrast with a normal type that would indicate the class containing
the declaration; in the context of an invocation of a method involving id typed arguments or return
values, id denotes the actual receiver of the method.

For example, if a classFoo declares the following method:

id self;

then the type of the expression

{
Foo a;
[a self];

}

is Foo. If there exists a classBar which inherits fromFoo, then the type of the expression

{
Bar a;
[a self];

}

33

Chapter 4. Basic types

is Bar , since it is aBar that was the actual receiver of theself message (as far as the compiler
knows).

The meta level of id can be shifted towards instances or classes, as can be seen in the following two
method declarations from theState class.

<doc> Return a newly allocated instance
of the receiving class. </doc>

instance (id)
alloc;

<doc> Return the class of the receiving object. </doc>
class (id)

class;

Thus, irrespective of the class of which thealloc method is invoked, the compiler knows that the
object returned byalloc is an instance of the receiving class.

Similarly, theisa instance variable is declared by theState instance as

class (id) isa;

Thus, in the context of a subclass ofState , the isa has the type of the actual class object, not just
theState class.

Tuple types
A tuple is a hotch-botch of values. For example,(123, 3.1415) is a tuple, and its type is (int, float).

The tuple type is not a first-class type: it is impossible to declare a variable with a tuple type. A single
element tuple type actually is the type of the element. The default value of a tuple type is a tuple with
as elements the default values of the tuple type’s elements. Tuples can nest:((1, 2), (3, 4)) is
a valid tuple, the type of which is ((int, int), (int, int)). Tuple nesting is rarely used.

The dynamic type can not be an element of a tuple type. All other types are allowed.

The primary use of tuple types is in passing values to or from a method. The following example
declares a methoddivmod which accepts one argument being a tuple of two integers and which
returns another tuple of two integers:

<doc> Return (a / b, a % b). </doc>
(int, int)

divmod (int, int) (a, b);

Another use of tuples is in shorthands such as simultaneous assignments:

int a, b; ...;
(a, b) = (b, a)

34

Chapter 4. Basic types

The evaluation of tuple elements is defined to be from left to right. Thus, the result of the following
expression

{
int i = 0;
(++i, ++i);

}

is defined and equal to(1, 2) .

The type of an element of a tuple can be neither dynamic nor void.

35

Chapter 5. Classes
We now come to the most important subject of an object oriented programming language: how objects
are constructed. We will use a simpleCounter class as the example along which to explain the object
basics. We know the following aboutCounter objects:

1. eachCounter object maintains information about its current value, and

2. it responds to thenextValue message by returning the next value, thereby updating its current
value.

This description only contains statements about theCounter objects, i.e. instances of theCounter

class. Therefore the class definition can be empty, for now.

implementation class Counter end;

The Counter instances maintain a current value, and respond to thenextValue method. This is
written thus:

implementation instance Counter
{

int current_value;
}

int
nextValue

{
current_value += 1;
= current_value;

}

end;

The definition of theCounter instance starts withimplementation instance Counter and ends
with end; . Within this definition, between the first pair of braces aninstance variableis defined.
Instance variables form the state maintained by each instance of the current class: everyCounter

instance will have its own value of thecurrent_value . This variable has the type int.

Following the instance variable declaration, thenextValue method is defined. This method has no
arguments and returns an int. In the body of the method, thecurrent_value instance variable of the
current instanceis incremented by 1, and the resulting value is returned. The current instance is the
receiver of the message as a result of which the current method was invoked. Thus, in the following
example

Counter count = ...;
int i = [count nextValue];

36

Chapter 5. Classes

thecount variable denotes aCounter instance; in the second line, thenextValue message is sent
to it, and thenextValue method will be invoked, with the object we know ascount as the receiver.

Inheritance
We now have a class definition, but no means yet to create instances. The language does not provide
a mechanism to create instances; instead, this functionality is provided by the library. The TOM
standard library contains a classState that provides the following method:

instance (id)
alloc;

This class method returns a new instance of the receiving class. Thus, invoking

x = [State alloc];

will return a new instance of theState class. “How does this help us to createCounter objects?”
you ask. By indicating that aCounter object is also aState object, which will cause theCounter

objects to behave asState objects, and similar, that theCounter class behaves as theState class.
This is calledinheritance: every method defined byState is not only applicable toState , but also
to Counter . To indicate that ourCounter inherits fromState , the class definition is changed to:

implementation class
Counter: State

end;

Now any method or instance variable defined for theState class (or instance) now also applies to
theCounter class (or instance). To denote the relationship between the two classes,State is called
asuperclassof Counter , andCounter is asubclassof State .

The methods inherited fromState include thealloc method and we can now sendalloc messages
to theCounter class to create newCounter instances:

Counter count1 = [Counter alloc];

The return type of thealloc method is instance (id). The id type denotes the type of the receiving
object, as seen by the caller. In the example, the receiver is theCounter class object, and id denotes
theCounter class. The instance () modifies the type between the parentheses to indicate the instance
of that type. The type of object returned by thealloc method in this example thus is ‘instance of the
Counter class’, written asCounter , which is exactly the type of thecount1 variable to which the
value returned is assigned.

37

Chapter 5. Classes

Object variables
Classes and instances must be able to hold state. TOM provides a few kinds of state.

implementation class StatefulCounter
{

int starting_value;
}

end;

As with theCounter instance defined previously, we’ve defined aStatefulCounter , which pos-
sesses state. In this case though, we’ve created a class variable, which maintains a single value, ac-
cessible by all instances of that class. However, each sub-class ofStatefulCounter would receive
its own copy ofstarting_value that would be shared by its instances.

Qualifiers
Various qualifiers may be applied to the declaration of an object variable. These qualifiers alter the
behavior and scope of that variable.

mutable

mutable int starting_value;

A mutable variable automatically defines a setter method of the form:

void
set_starting_value int _new_value

{
starting_value = _new_value;

}

The compiler will generate the method using the correct type and variable names. This may be used
in conjunction with thepublic qualifier.

obsolete

obsolete int starting_value;

An obsolete variable has been marked to warn programmers that it will be going away in the
future. References to this variable will generate warnings. Additionally, if it ispublic or mutable ,
the methods generated will also be flagged asobsolete and use of those methods will generate
warnings.

* This does not completely work yet. Variable references do not yet generate warnings.

38

Chapter 5. Classes

private

private int starting_value;

A private variable is only accessible to methods on the class which defined it.

protected

protected int starting_value;

A protected variable is only accessible to methods on the class which defined it, as well as any
sub-classes.

public

public int starting_value;

The compiler automatically creates an accessor method for apublic variable. The accessor is of this
form:

int
starting_value

{
= starting_value;

}

The compiler will generate the method using the correct type and variable names. This may be used
in conjunction with thepublic qualifier.

static

static int starting_value;

A static variable only exists upon the class which defined it. Sub-classes do not receive their own
copy of the variable. Thestatic qualifier is only valid on class variables.

local

static local int starting_value;

A local variable’s value is stored within thread-local storage. Thelocal qualifier is only valid on
static class variables.

39

Chapter 5. Classes

redeclare

redeclare long starting_value;

Redeclaring a variable allows the programmer to change the type. Redeclaring a variable that was not
previously declared is not allowed.

Method overriding
Suppose we need aTwoCounter object that increments its value by 2 instead of 1 each timenextValue

is invoked. We could write aTwoCounter class from scratch en end up with a class very similar to
Counter , but that wastes the effort we put in developing theCounter class and duplicates that effort
in creating theTwoCounter class. The severity of this problem increases with the complexity of the
classes and the effort needed to develop them, and to debug, test, document, etc.

Luckily, just like Counter inherits fromState , TwoCounter can inherit fromCounter . Since
we need different behaviour for thenextValue message, theTwoCounter can provide its own
nextValue method, overriding the method provided byCounter .

implementation class TwoCounter: Counter end;

implementation instance
TwoCounter

redefine int
nextValue

{
current_value += 2;
= current_value;

}

end;

WhennextValue is sent to aTwoCounter instance, the object will add 2 to itscurrent_value

and return the result. Apart from this method, aTwoCounter behaves exactly the same as aCounter .

Messaging super

In the previous section, thenextValue method in theTwoCounter class was a complete rewrite of
the original method. If the method being overridden performs quite a heavy task, it is a waste to have
to fully rewrite or copy it, when all that is needed is a slight modification before or afterwards. In the

40

Chapter 5. Classes

example, all that is needed by thenextValue of TwoCounter is an increase of thecurrent_value

before the code of the original method.

The original method can still be invoked, by messaging the special receiversuper , as is show in this
example:

redefine int
nextValue

{
current_value++;
= [super nextValue];

}

The effect of messagingsuper is that the method invoked will be the method defined or inherited
by the superclass of the current class. The value ofself within that method will be the same as in
the current method, thus messaging super is like messagingself , with the only difference being an
indication which class is to provide the method implementation.

Messaging super need not just concern the method overridden by the current method. Any method
can be invoked, though that is highly unusual, except in the case of initializers, where the designated
initializer of the subclass invokes the designated initializer of the superclass. Though actually different
these methods are identicalconceptually.

Theredefine qualifier shown in the example method definitions in this section are actually optional.
The compiler can be directed to issue a warning when aredefine is omitted, but due to reasons to
become clear later, the presence ofredefine can not be required.

Object allocation and initialization
An object returned byalloc is in a known state: each instance variable of the object has the default
value of its type (except the instance variables introduced byState , most notablyisa , which is a
reference to the object’s class). The state of default values however is not necessarily a meaningful
state. For example, if the specification of theCounter objects included that the first value normally
returned by an instance is 10, the proper initial value of thecurrent_value would be 9. Therefore,
every object must be initialized after allocation. The default initialization method has no arguments;
it is defined byState as

id
init

{
= self;

}

The conventional way of creating a new instance of a class is by invokingalloc andinit in a single
expression.

MyClass x = [[MyClass alloc] init];

41

Chapter 5. Classes

If Counter objects would indeed return 10 as the first value returned fromnextValue , the initial-
ization method would look like this:

id
init

{
next_value = 9;
= [super init];

}

Often, initialization of an object needs one or more arguments. An example of this is an initializer for
theCounter class where the first value returned bynextValue can be specified.

id
initWithValue int value

{
next_value = value - 1;
= [super init];

}

In case of multiple initializers, usually, one is the designated initializer and the other initializers can
be implemented by invoking it. For example, ifinitWithValue were the designated initializer of a
Counter , theinit method could be implemented like this:

id
init

{
= [self initWithValue 10];

}

An advantage of this setup is that subclasses only need to override a single initializer, when necessary,
instead of all or any number of them.

Always having to invoke two methods (alloc and some initializer) just to create a new object can
become a burden. For this reason, classes can provide, through inheritance or by implementation, one
or moreallocators, which pack the allocation and initialization into a single method. For example,
State providesnew as the default allocator:new allocates a new object and invokes the default
initializer.

instance (id)
new

{
= [[self alloc] init];

}

Using the allocator, objects can be created easier, though not faster since it involves an extra method
call.

MyClass obj = [MyClass new];

42

Chapter 5. Classes

Just like a class can have a different designated initializer than its superclass, it can also have a
different designated allocator. TheNumber class for instance, provides an allocatorwith for easy
allocation:

Number one = [IntNumber with 1];

Object destruction
The lifetime of objects is controlled by the garbage collector within the TOM Runtime. When no re-
maining strong references to an object remain, the GC will collect the object, deallocating the memory
consumed by the object. Just before the GC collects the object, it invokes a deallocation notification
method on the object whose default implementation is provided byState :

void
dealloc

{
void;

}

An object must override this method to perform cleanup operations specific to the needs and imple-
mentation of that object, such as closing files, shutting down database connections, or freeing OS
resources. An example of this isDescriptor :

void
dealloc

{
if (descriptor != -1)

bind ((stream-error, nil))
[self close];

}

This method ensures that theDescriptor is closed, avoiding the leak of a file descriptor at the OS
level.

When implementating adealloc method, care must be taken to avoid messaging any other objects
from within this method, as they may have become garbage as well, and already been collected. Since
class objects can not become garbage, it is safe to message class objects.

There are no guarantees that an object will be collected in a timely manner, or even at all (should
references remain). This makes it critical that garbage collected objects not be relied upon to manage
the lifetime of very limited resources such as file descriptors. They should also not be used to manage
objects whose collection is time critical, such as objects which are user-visible.

43

Chapter 5. Classes

Polymorphism
A subclass understands the same messages as its superclass since every method defined by the su-
perclass is inherited by the subclass if it doesn’t provide its own method definition for the particular
message. In the case ofCounter and TwoCounter this means that any place where an object is
handled as if it is aCounter instance, aTwoCounter instance can be substituted.

For example, the following method retrieves thenextValue from a Counter object passed as the
argument:

int
getNextValueFrom Counter counter

{
= [counter nextValue];

}

When this method is passed aTwoCounter object instead of the expectedCounter , sending the
nextValue method is still valid. In fact, sendinganymessage understood by aCounter will be valid,
since theTwoCounter is a subclass of the expectedCounter class. This observation is universally
applicable: any time a certain class is expected, passing a subclass is equally valid.

Now, what happens when the following code is executed?

Counter c2 = [TwoCounter alloc];
int i = [c2 nextValue];

The variablec2 has typeCounter , but actually references aTwoCounter object. When thenextValue

message is sent, which method is actually invoked: the one defined byCounter , because that is the
type ofc2 , or the one defined byTwoCounter , because that is the actual class of the receiver? The
answers is that the actual class of the receiver, and not the caller’s idea of the receiver’s type, de-
cides which method is invoked. This is calledpolymorphism: the method invoked depends only on
the receiver.

When looking back you’ll notice that at a lot of places in the preceding sections, the polymorphism
was already used, without mentioning it. Yet, intuitively, the meaning was always obvious.

A class is not atomic
A class defines the behaviour of its instances, and the state that they carry in support of that behaviour.
You can use this class as-is, or subclass it to provide more specialized behaviour. This is where the
story ends with most object oriented programming languages, but not with TOM. In circumstances
where you have no control over a class, for instance because it is part of a vendor-supplied library, not
being able to amend it to your needs might just mean that you can not use the class or, even worse,
the whole library.

TOM classes are not atomic. A class can be modified: you can add methods, instances variables and
superclasses, without modification to the original source, which is essential in case you do not have

44

Chapter 5. Classes

access to it. Modification can take place at compile, link, and run-time. Methods can also be replaced,
for example to fix erroneous behaviour of the original implementation.

* [A limitation of the current runtime library is that adding instance variables at run time to a class of which instances have

been allocated is not possible.]

Suppose theCounter class we have used as an example throughout this chapter is supplied to us
without the source code. It doesn’t fully suit our needs, but we do not want to waste any effort rewriting
it and we have no control over some locations in the code whereCounter instances are allocated,
making subclassing not an option. We can write anextensionof Counter to make it suitable for our
purpose.

Suppose the needed extra functionality is acurrent_value method which returns the current value
of theCounter . We can supply this functionality in the following extension:

implementation instance
Counter extension fix

int
current_value

{
= current_value;

}

end;

Multiple inheritance
Multiple inheritance refers to the ability of a class to have more than a single superclass. Various
object-oriented languages provide multiple inheritance; equally many languages provide only single
inheritance, possibly with ‘interface inheritance’ constructs like Objective-C’s protocols and Java’s
interfaces. C++ at one point in its committee life, in all its baroqueness, had both multiple inheritance,
plus inheritance of interface through signatures.

Semantics
Suppose the classD has bothB andC as a superclass.

implementation class D: B, C
end;

implementation instance D
end;

What effect does this inheritance of two classes have?

45

Chapter 5. Classes

• Any state defined for instances ofB or C is also present in instances ofD. There is no sharing of slots
based on the name of instance variables as in CLOS. Thus, every instance variablei consuming
space in an instance ofB or C, also consumes space in an instance ofD.

• Every method defined forB is also defined forD. Obviously, every method defined forC is also
defined forD.

• If both B andC define the same methodfoo , a method clash is said to have occured, andD should
provide its own implementation of that method. This is not mandatory; it is not checked by the
compiler; it is optionally checked by the resolver. If a method clash is not resolved, aprogram-

condition is raised when the method is invoked at run time.

A class with instances that carry state (i.e., instance variables) must be a subclass of theState class. If
bothB andC maintain state, they must both inherit fromState , which brings up the issues involving
repeated inheritance. Actually, these issues are mild in TOM when compared to the same issues in
languages like C++ or Eiffel. To sum it up: repeated inheritance is shared inheritance.

• With respect to instance variables, things remain the same: every instance variable declared in a
superclass gets its spot in the subclass. Thus,D only has oneisa instance variable (inherited from
State), even though it ‘is inherited twice’.

• If a methodfoo is defined byState , unharmed byB, and redefined byC, it is the redefinition ofC
that is applicable toD. The implementation byState that ‘is visible’ through the inheritance ofB

is nulled by it being overriden in the inheritance path throughC.

Messaging super
Messagingsuper is performing an invocation of a method as provided by a superclass. Usually, the
method is invoked from the method that overrides the original definition. For example, the following
is not uncommon for an initializer:

id
init

{
my_counter = 1;
= [super init];

}

If a class has multiple superclasses, the message to super must indicate which superclass is to provide
the method implementation. If the super message is unambiguous, the compiler will make the obvious
choice, that can be described as follows: Suppose classD overrides the methodinit as described
above. Imagine a classE, with exactly the same superclasses asD, but without overriding any method.
Then, invokinginit on an instance ofE will be bound to a particular method implementation. If
that implementation is provided by a direct superclass ofE or is only visible through a single direct
superclass ofE, than that is the superclass a message to super inD refers to. If, however, there is a
method clash, or the method is visible through more than one direct superclass, the super reference

46

Chapter 5. Classes

is ambiguous and must be disambiguated, as shown in this example (note that the syntax of directing
which super to message is different from ‘casting super’):

id
init

{
my_counter = 1;
= [super (B) init];

}

Net effect is that when dynamic loading introduces aninit method for instances of classC, that
change will not be applicable to this method and its messaging of super.

Special classes
Several classes can be recognized in any TOM program, much like the standard classes in other
languages. For example, in Smalltalk, theObject class resides at the root of the inheritance tree.
TOM employs the following special types c.q. classes:

Top

The implicit supertype of all object types. This type is not very useful, as it does not define any
behaviour and can not be extended.

Any

The implicit subtype of every object type: when used as the return type of a method that can
return any object, the caller never needs to cast the value that is returned. For example, the
following method is the only object retrieval method of theObjectArray class (which offers a
read-only array abstraction that stores object references) that actually directly retrieves an object:

Any
at int index;

All

The conventional supertype of all object types. All classesshouldeither inherit fromState

(see below) or both class object and instancesshouldinherit from theinstance (All) . The
instanceAll defines all kinds of behaviour that is useful forall objects, both class objects and
instances.

Being the supertype of all objects,All can be used as the type of a formal argument, allowing
any object type to be passed as an actual argument, without needing a cast. This is used, for
example, by the only method of theMutableObjectArray class (which offers a read-write
array abstraction that stores object references) that actually directly modifies the array:

void

47

Chapter 5. Classes

set All object
at int index;

State

Every class must inherit fromState for the instances to be allocatable.State is also the
class that defines theisa object variables and that provides the designated way to create new
instances, namely through thealloc class method.

The instance (All) is the conventional supertype of all objects, a fact that is visible in the
definition of theState class:

implementation class State: instance (All)
...
end;

implementation instance State: instance (All)
...
end;

The usefulness of theTop and Any types is restricted to compile time: they do not represent real
objects that can be allocated or extended. The pervasive presence ofAll enables the addition of
behaviour toall objects, not discriminating between instances and class objects, simply by extending
theAll instance. Similarly, behaviour can be added to all classesor all instances, simply by extending
theState classor theState instance.

TheState is a superclass of all classes that specify allocatable instances.State specifies the object
variables that are needed in every instance and class object.State also is the class that provides the
object allocation mechanism, through thealloc class method.

Every instance is described by its class, and every class by its meta class. TheState meta class is
also the meta-meta class of every meta-class. To prevent cycles,State can not inherit from classes
that define class methods.

Collections
More coming.

48

Chapter 6. Advanced topics

Blocks
This section discusses blocks as they were added to TOM by Tesla. The old TOM compiler, tomc,
can’t handle blocks.

Basics
A block is a piece of code that of which the execution is postponed. Instead of the code being executed
immediately, an instance of theBlock class is created as a placeholder for the piece of code. When
theBlock is evaluated, through itseval method, the piece of code is actually executed. Here is an
example of our favourite program, using aBlock .

int
main Array arguments

{
Block b = |{ /* no arguments */

|| [[[stdio out] print "hello, world"] nl];
}|;

[b eval];
}

A Block starts with |{ and ends with }|. In between are at least two vertial bars (‘|’) that precede
the actual code that is contained in theBlock . The verbose spacing, comment, and assignment to a
variable are optional. The same program could look like this:

int
main Array arguments

{
[|{|| [[[stdio out] print "hello, world"] nl]; }| eval];

}

A Block can have arguments and it can return a value. The arguments are declared like the argument
accompanying a method name part: either a single argument name preceded by its type, or an argu-
ment tuple preceded by a tuple type. The return type of aBlock is not declared: the value returned by
a Block is the value of the last expression and its type is deduced by the compiler. In the following
example, we employ aBlock to return the result of adding two integers:

int
main Array arguments

{
Block adder = |{ (int, int) (i, j)

||
i + j;

49

Chapter 6. Advanced topics

}|;
int result = [adder eval (24, 42)];

[[[stdio out] print ("24 + 42 = ", result)] nl];
}

A Block does not need to be evaluated lexically within the enclosing method; it can be evaluated from
anywhere. Irrespective of the context in which it isevaluated, aBlock can reference the variables in
the context where it wascreated. In the following example, the variablecount is incremented twice,
and the number printed is 2.

void
do Block a_block

{
[a_block eval];

}

int
main Array arguments

{
int count;
Block b = |{ || count++; }|;

[self do b];
[b eval];

[[[stdio out] print ("count = ", count)] nl];
}

When aBlock references variables from its context, theBlock is invalidated when that context
exits. The following example shows how such a situation may occur: theBlock , created in the
one_block_please method, is evaluated after theone_block_please method has exited. As a
result, theeval method raises aCondition :

Block
one_block_please

{
int num_invocations;

= |{ || ++num_invocations; }|;
}

int
main Array arguments

{
Block block = [self one_block_please];

// FAIL: the context in which the BLOCK
// was created has already exited.

50

Chapter 6. Advanced topics

int n = [block eval];

[[[stdio out] print ("number of invocations = ", n)] nl];
}

Apparantly, aBlock can not use variables from its context when that context exits before the useful
life of theBlock has passed. Sinceself is part of the context, also instance variables can not be used
for that purpose. To remedy this, thus allowing aBlock to maintain information over invocations
irrespective of whether its context has exited, aBlock can employblock variables, as shown in the
following example, where theBlock created has one block variable,num_invocations . Notice how
block variables occupy the space between the double vertical bar we used up to now:

Block
one_block_please

{
= |{ /* no arguments */

| int num_invocations;
| ++num_invocations;

}|;
}

int
main Array arguments

{
Block block = [self one_block_please];
int n = [block eval];

[[[stdio out] print ("number of invocations = ", n)] nl];
}

If you want to reference instance variables from aBlock after its context has exited, you can do so by
declaring a block variableself , as the following example shows. Note how the value that is assigned
to the block variableself is the value of the implicit method argumentself .

implementation instance
TOM
{

int num_cows;
}

Block
cow_counter

{
= |{ /* no arguments */

| id self = self;
| num_cows++;

}|;
}

51

Chapter 6. Advanced topics

int
main Array arguments

{
Block cc = [self cow_counter];
int i;

for (i = 0; i < 10; i++)
{

int cow_i = [cc eval];
[[[stdio out] print ("cow number ", cow_i)] nl];

}

[[[stdio out] print (num_cows, " cows")] nl];
}

end;

The eval method
Theeval method of theBlock class is declared thus:

dynamic
eval dynamic arguments;

The eval method accepts any argument and returns any type of value. The types of the actual ar-
gument and the value returned is deduced by the compiler and administered in its output. At run
time, theeval method checks to see that the arguments passed match the arguments expected by the
Block , and that the type of value returned by theBlock matches the type of value that is expected by
the caller. Upon a mismatch, aCondition is raised. As an exception, any type returned by aBlock

matches an expected return type void.

The overhead in execution time of theeval method is similar to that of theperform with of the
All instance. This overhead is somewhat reduced by providingeval methods that are specialized on
their types. As an example, this is what theeval method looks like that accepts an int and returns an
int:

int (result)
eval int a1

{
pointer fn = code;

if (check_block_selectors && cmd != arguments)
if ([self arguments_fail (arguments, cmd)])

return;

<c>
result = ((tom_int (*) (void *, void *, tom_int)) fn)

52

Chapter 6. Advanced topics

(self, cmd, a1);
</c>

}

In these specializedeval methods, the following variables and methods are used:

code

an instance variable of theBlock that points to the C function which is executed to evaluate the
Block ;

check_block_selectors

aclass compile optionthat is usuallyTRUE; and

arguments

a selectors that describes the formal argument and return type of the receivingBlock .

arguments_fail (formal, actual)

a boolean method that returnsTRUEif the actual selector passed to aneval method can not fit
the Block ’s formal selector. In fact, whenarguments_fail is about to returnTRUE, it will
raise aCondition .

TheBlock class comes with some specializedeval methods, including this exampleint eval int .
Additional specializedeval methods, can be added in an extension of theBlock class.

* TODO: Execution-speed measurements.

Conditions
Conditions in TOM are modeled after Common Lisp conditions (seeCommon Lisp the Language, 2nd
edition (http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html)), with some simplifications. Condi-
tions are not like exceptions in languages like C++ or Java, the most important difference being that
the stack is not unwound while the condition is being handled.

Creation and issuing of conditions is functionality of the TOM runtime library. Handling conditions is
part of the TOM language. We’ll start the discussion of these two intertwined subjects with catching
things that are thrown.

Non-local gotos
TOM provides exactly one way to perform a non-local goto:throwing something at an object, by
invoking thethrow method that is defined by theAll instance, as in:

[my_object throw void];

53

Chapter 6. Advanced topics

Here, void is not the void type, but the single possible value of that type, which bears the same name.
Thus basically, we throw nothing special at the object we know asmy_object .

Of course, throwing something is not really interesting if you can not catch it. To setup a catch for a
value thrown at an object, use acatch expression:

catch (my_object)
[foo do_difficult_with bar];

catch is followed by thetag expression in parentheses, followed by a body expression. While the
body of the catch is evaluated, anything thrown at the tag will be caught by this catch. In the example,
we’re catching values for the object we know asmy_object .

The tag expression must be an object. The tag can benil , but that is not very useful, since you will
not be able to throw anything atnil .

A catch is an expression and like every expression, it has a type and it produces a value after evalu-
ation. The value of the catch expression is either the value of the body expression or the value thrown
at the tag object. For example, the following is an elaborate way to assign to the booleana whether
a1 is larger thana2.

boolean a = catch (self)
({

if (a1 > a2)
[self throw TRUE];

FALSE;
});

When executing, ifa1 > a2 , the valueTRUEwill be thrown at the catch: execution of the body
expression is terminated, the stack is unwound up to the stack frame of the catch (thinklongjmp if
you like), and the valueTRUEis returned as the value of thecatch expression. In the other case, if
a1 is not larger thana2, the body of theif is not executed, and the result of the catch is the value of
the last expression,FALSE.

Incidentally, note the parentheses around the body compound ofcatch : the body of a catch must be
an expression, and a compound can only be an expression as an element of a tuple. (The tuple has
only one element in this case.)

It is an error if the type of value thrown at an object does not match the type that the catch expects.
The one exception to this rule is when the value void is thrown, in which case the value returned by
the catch is the default value of the type to be returned (0 for numbers,nil for objects, etc).

Issuing conditions
A condition is an object, an instance of theCondition class. A condition is normally created by
invoking the following method of theCondition class:

instance (id)

54

Chapter 6. Advanced topics

for All object
class ConditionClass condition_class

message String message;

The three arguments provide the values of the three instance variables with the same name, of the
Condition object that will be created and returned. Theobject is the object to which the condition
applies, for example theFile object for a condition applying to some failed operation on that file.
The message is meant to provide a description of the condition, to be read by a human and not to
be interpreted by a program. An example of a useful message is the string returned by the C library
functionperror .

The condition_class is an instance of theConditionClass class. Each condition-class object
has a name, and through their super-condition-class instance variable, the condition class objects
describe a single inheritance hierarchy of condition classes.

TheConditions class contains static class variables for the predefined condition classes. For exam-
ple, one of them is thenil-receiver ; it is a runtime-condition , which in turn is aserious-

condition , which is acondition . Thecondition is the root of the condition-class hierarchy; it
is the supercondition-class of all other condition classes.

As an example, when a message is sent tonil , the following condition is created:

Condition c = [Condition for nil class nil-receiver
message "nil receiver"];

The object to which the condition applies is of coursenil , since the fact that it isnil was the reason
for creating the condition.

Conditions can be issued in two different ways: raised or signaled. When a condition is raised, as in

Condition c = ...;
[c raise];

execution of the program is guaranteed to not return from theraise method, exiting the program if
that is the only way to achieve the goal. A condition is signaled by invoking itssignal method:

Any
signal;

An invocation of thesignal method may or may not return, depending on the behavior of the in-
stalled condition handlers: if one of them performs a non-local goto, thesignal invocation will not
return.

Condition handlers
To start with an example, the following is amain method that I used frequently to observe unhandled
condition signals (until the library option:rt-signals was provided that does the same):

55

Chapter 6. Advanced topics

int (retcode)
main Array arguments

{
ConditionClass cc = condition;

bind ((cc,
{

[[[stdio err] print ("unhandled condition: ",
condition)] nl];

condition;
}))

retcode = [self real_main arguments];
}

The bind sets up a condition handler, which will be in place while the body of thebind is active,
in this case during the invocation ofreal_main . When a condition is raised or signaled, all active
handlers are considered in reverse order from their creation.

Each handler in abind is a two-expression tuple; multiple handlers are separated by semicolons. The
type of a handler is

(ConditionClass, All)

The first element is aConditionClass , indicating to which kind of conditions the handler applies.
In the example, the condition class iscondition , but a variable with a different name is used to
denote it. The reason for this is the fact that within a handler,condition is the name of the condition
that is being passed. In the example, a handler is installed that matches any condition with condition
classcondition , or any subcondition-class thereof.

The second element of a handler is an expression that will be executed to handle a condition. The
condition is available in the implicit argument to the handler:

Condition condition;

A condition handler can do one of three things:

1. Let the condition pass: in this case the handler decides that the condition is not interesting after all,
and that the condition must continue to search for a handler that is willing to handle it. Searching
continues with outstanding handlers further on the stack.

A handler shows its desinterest by returning thecondition object, as is done in the above
example.

2. Handle the condition: the handler returns any object, just not thecondition being handled.
What the value that is returnedmeansdepends on the kind of condition. In this case, signaling
the condition will finish and the invocation of thesignal of the condition will return with the
value returned by the handler. See below for an example of this usage.

3. Perform a non-local goto, by throwing some value at somecatch tag.

56

Chapter 6. Advanced topics

The above description is valid for a condition that is signaled. If a condition is raised, cases 1 and 2 are
not discerned (and handled like case 1): if a condition is raised, some handler somewhere along the
line must perform a non-local goto, or the program will exit when it has run out of possible handlers.
A handler can ask a condition whether it is being signaled or raised by invoking itsraised method,
which returns a boolean.

unwind

Theunwind expression guarantees that some protection code is executed, either when the body ex-
pression has been evaluated, or when the stack frame is cleared because of a non-local goto. In the
following example, theunwind ensures that thefile is closed no matter what happens:

File file = [File open ...];
unwind ([file close])

({
/* Do something with the FILE. */
...;

});

The value of theunwind expression is the value of the body.

signal example
This section presents an example in which conditions are used to give the user control over what
happens when a file can not be opened. This setup is only possible because the stack is not unwound
while a condition is handled, i.e., because conditions can not only be raised but also signaled.

Suppose a (fictuous)ReadOnlyFile object is opened and created using this method:

ReadOnlyFile (the_file)
open String filename

{
the_file = [[self alloc] initWithFilename filename];
if (![the_file open])

return nil;
}

Thus, opening a file first creates a new object for the given filename, and then lets the file open itself.
The implementation of theopen method could look like this; hopefully the methods being invoked
have descriptive enough names for their missing implementation to not be a problem:

boolean (success)
open

{
for (;;)

{

57

Chapter 6. Advanced topics

/* Try to open, and return TRUE upon success. */
[self attempt_to_open];
if ([self is_open])

return TRUE;

/* See if we can get an alternative filename. */
Condition c = [Condition for self class file-open-problem

message [self strerror]];
String alternative_name = [c signal];
if (!alternative_name)

{
/* The condition was not handled. */
return FALSE;

}

/* Make the ALTERNATIVE_NAME our new name. */
[self set_name alternative_name];

}
}

This method will try to open the file, getting alternative names as long as they are supplied, and finally
returnTRUEupon success, orFALSEupon failure.

We could use the mechanism provided by theReadOnlyFile class in a program to offer the user the
possibility of specifying an alternative filename, as shown in the following code:

/* Setup a handler for FILE-OPEN-PROBLEM conditions. */
bind ((file-open-problem,

{
/* Retrieve the file object to which the condition applies. */
ReadOnlyFile file = [condition object];

/* Describe the problem to the user and prompt for input. */
[[[stdio err] print ("trouble opening: ", [file name])] nl];
[[[stdio err] print ("reason: ", [condition message])] nl];
[[[stdio err] print "alternative (RET for original)? "] nl];

/* Read a line of input. */
String input = [[stdio err] readLine];

/* If the input is an empty line, return NIL, indicating that
we did handle this condition, but that an alternative
filename was not entered. Otherwise, return the filename
entered by the user. As long as we do not return the
CONDITION object, we will have handled this condition. */

[input length] > 0 ? input : nil;
}))

({
file = [ReadOnlyFile open "/foo/bar"];

58

Chapter 6. Advanced topics

});

Below are two example runs; the program attempts to open the file and prints the value that is returned
before exiting:

$./rofile foo
trouble opening: foo
reason: No such file or directory
alternative (RET for original)?
bar
trouble opening: bar
reason: No such file or directory
alternative (RET for original)?

nil
$./rofile foo
trouble opening: foo
reason: No such file or directory
alternative (RET for original)?
rofile
#<ReadOnlyFile 00201700 name=rofile>
$

Glueing TOM and C
At the lower levels of abstraction, it is often necessary to glue code written in one programming
language to code written in another. Most languages can interface to C and, in fact, the TOM compiler
translates TOM code to C code. Therefore, TOM provides extensive support for interaction between
TOM code and C code.

C functions for TOM methods
There are two ways of mixing C code with a TOM program. One is straightforward and could be
called elegant, certainly with respect to the other one, which is a hack. The straightforward mix of
TOM code and C code is by implementing TOM methods in C. To inform the compiler of this setup,
the method is qualifiedextern .

extern double
cos double arg;

To a TOM compiler, this declaration doubles as a definition: a method declaredextern can not have
a method body. Though the actual C (or other language) function implementing this method is beyond
the control of tesla or tomc, it is mandatory that the function is provided, or the resulting program will
not link.

59

Chapter 6. Advanced topics

To implement thecos method in C, we need to know a little more about the name of a C function that
implements a given method. In general, the C function name of a method has the following structure:

ic_unit_extension-name_mangled-selector

where each element has the following meaning:

ic

This is i for an instance method;c for a class method.

unit

The name of the unit containing this method definition. If the method is defined in a class, it is
the unit containing the class. If the method is defined in an extension, it is the unit containing the
extension, which is not necessarily equal to the unit containing the class.

For example, thetoo unit defines aProxy extension to theState class, which itself is defined
in the tom unit. For methods defined in this extension, theunit element will betoo , not tom .

extension-name

This is the class name for a method defined in a class, i.e., in themain extension, or the composite
nameFoo_Bar for theBar extension of theFoo class.

mangled-selector

This is the mangled selector name, i.e., the name of the selector after it has been mangled to fit
the restrictions imposed on a C identifier: all characters that are not allowed in such an identifier
are replaced by an underscore ‘_’. Given the kinds of characters that can occur in a selector
name, this means that every ‘(’, ‘)’, ‘-’, or ‘:’ is replaced by an ‘_’.

Selector names
Before we can continue implementing theextern method, we need to know how the name of a
selector is constructed. This is best explained starting with the method that is invoked when a message
with that selector is sent to an object. Suppose thecos method is invoked, then the selector contains
its name,cos , and an encoding of its return type and argument type. Table 6-1 lists all TOM types
and for each type the character that is used to encode that type.

Table 6-1. type encodings

type encoding type encoding type encoding

void v int i pointer p

boolean o long l selector s

byte b float f reference r

60

Chapter 6. Advanced topics

type encoding type encoding type encoding

char c double d dynamic x

The selector name is made up of method names and encoded argument types, preceded by the encoded
return type. Each type is enclosed in parenthesis. The selector name of our double returningcos

method accepting a double argument becomes:

(d)cos(d)

A few words need to be said about the reference and dynamic types in Table 6-1. First, areference
is not a TOM type: there is not a type in the language that has the concrete syntactic representation
reference . A reference stands for a reference to an object,anyobject. Thus, at the level of selectors
and selector names, all objects are equal.

The encoding of the dynamic type only occurs in method names (in the mangled selector part), never
in the selector of a message. For example, the name of the function implementing the instance method

void
print dynamic a;

of theBar class in thefoo unit will be

i_foo_Bar_v_print_x_

but when a message is sent that will invoke this method, the actual arguments of the message are
known, and the selector passed to the method will convey their types. Thus, when invoking the method
like this:

foo.Bar mybar = ...;
[mybar print FALSE];

the selector that is passed to the method will be(v)print(o) , showing that for the dynamic formal
argument, the actual argument passed is a single boolean.

As an example of the encoding of a tuple, for the following invocation ofprint

[mybar print (3.14e0, 9876543210, FALSE, 1234567890, 1.6d-19)];

the selector passed to the method will be

(v)print(floid)

Tuples can of course also occur in a method name, and hence, in mangled form, in the name of a C
function implementing that method. The following method

extern double
atan2 (double, double) (x, y);

responds to the selector(d)atan2(dd) , and the C function implementing this method in theMath

class of theC library unit isc_C_Math_d_atan2_dd_ .

61

Chapter 6. Advanced topics

Type names
Before we can implement ourcos method, we must know how to denote the TOM types in C. Table
6-2 lists the TOM types and for each type the equivalent type to be used in C. These types are defined
in <tom/trt.h> .

Table 6-2. C types for TOM types

TOM type C type TOM type C type TOM type C type

void void int tom_int pointer void *

boolean tom_byte long tom_long selector selector

byte tom_byte float tom_float reference tom_object

char tom_char double tom_double dynamic ...

The triple dots as the C type for the TOM dynamic type actually refer to the triple dots used in a C
function to denote a variable number of arguments and the used of<stdarg.h> . However, that is a
very hairy issue we will not delve into right now.

External implementation
From the information in Table 6-2, we are finally able to write ourcos method, supposedly for the
Math class of theC unit:

#include <math.h>
#include <C-r.h>

tom_double
c_C_Math_d_cos_d_ (tom_object self, selector cmd, tom_double arg)
{

return cos (arg);
}

The conversion from the tom_double arg to the (C) double accepted by the functioncos is handled by
the C compiler, as is the conversion of the result ofcos to the value that is returned. (On all machines
currently supporting TOM, a tom_double is simply a double, making the conversion rather easy.)

A few things can be said about this code:

• The inclusion of<C-r.h> isn’t strictly necessary in this example, but in the case of less triv-
ial implementations, including the fileunit-r.h is mandatory. This file is the resolver output and
contains vital information about the classes and selectors that are defined in theunit. It also in-
cludes the resolver output of the units on which theunit depends, plus the TOM runtime header file
<tom/trt.h> . The latter is mandatory (for the C equivalent definitions of the TOM types). Often
you will also find use for including<tom/util.h> which contains less elementary information
for interfacing with TOM code and the TOM Run Time library (trt).

62

Chapter 6. Advanced topics

• The first argument to a method implementation is always the (implicit) receiver object. In C you
should always declare the type to be a tom_object, even if you think to know that it will be some-
thing more specific. The tom_object type is pretty opaque, being defined as follows (in<tom/trt.h> :

typedef struct trt_instance
{

/* The class of this object. */
struct trt_class *isa;

/* The flags needed by the runtime. */
tom_int asi;

} *tom_object;

The isa is the pointer to the class of the object; theasi field is used by trt to store (1) whether
the object is an instance, a class, or a meta class, and (2) information for the garbage collector.
Any instance (or non-static class) variables of the object are not directly available by dereferencing
self ; a future TOM highlight will shed light on how that can be achieved.

• The selector argumentcmd is the second implicit argument to every method invocation. Thearg is
the first ‘real’ argument.

The hack
As promised at the start of this highlight, there also is a hack to write functionality in C. This hack
uses the fact that the output of Tesla actually is C.

Normally, the TOM compiler ignores anything enclosed within<foo> and</foo> , regarding it as
comment (which does not nest). The flexibility of this commenting scheme is that special comments,
i.e., ‘comments’ with more meaning than just some remark on the code to follow, can be qualified.
For example the TOM documentation generator extracts comments enclosed in<doc> and</doc> ,
regarding them as documentation on the class, variable, or method to follow. It skips all other com-
ments, including the<copyright> and</copyright> at the top of the TOM library units source
files, since copyright information is not interesting for the reader that wants to learn how a certain
class works.

The single exception to the above rule is that text enclosed with<c> and</c> is not taken to be
comment. Instead, the enclosed text is copied verbatim to the output, implying that the text better be
literal C code, which is actually what it was meant for.

Our cos method can now be written as follows:

<c>
#include <math.h>
</c>

<doc> Return the cosine of the argument {arg}. </doc>
double (result)

cos double arg

63

Chapter 6. Advanced topics

{
<c>

result = cos (arg);
</c>
}

Again, a few notes:

• Do not use any nasties like the Creturn statement in your C code. Instead, assign a value to the
return value of the method, as is done in this example.

• You can include header files like<math.h> (at the global level; not within a method) but you can
not include the resolver output as was done with the external implementation ofcos . This has some
implications that increase the complexity of including C code like this.

• If you C code starts with a declaration, it should start its own block.

• The C code is included literally, so it does not need to be a fully delimited entity. For example, the
following implementation ofcos is ‘legal’:

double (result)
cos double arg

{
<c>

{
double a = arg;
result = cos (arg);

</c>
return;

<c>
}

</c>
}

Interaction with the Garbage Collector
...

Method forwarding

Forwarding mechanism
One of the things that make dynamic binding an interesting approach to method dispatching (i.e.,

64

Chapter 6. Advanced topics

the decision which code to invoke to handle a given message) is the ability to forward a method
invocation. A message is forwarded when the receiver object does not provide an implementation
of the method denoted by the message. In this highlight, the forward mechanism of TOM will be
explained.

Every method has two implicit arguments:self andcmd. The objectself is the ‘current object’; it
is the receiver of the message that lead to the method invocation. The argumentcmd is the selector of
that message.

When an object does not implement a method, theself andcmd arguments are used to decide how
to respond to the message.

• The receiver is asked for itsforwardDelegate . If an object other thannil is returned, the mes-
sage is simply resent to that object. This is the mechanism of choice when a lot of methods are to
be delegated to few different objects.

The forwardDelegate method is implemented by the instance All, and thus (by convention)
implemented by all classes and instances. The default implementation simply returnsnil :

All
forwardDelegate selector sel

{
= nil;

}

• (Skip this item if you don’t understand it.) If the object implements the method

InvocationResult
forwardSelector selector sel

arguments pointer pap;

then that method is invoked, withsel being the selector of the message being forwarded, andpap

a pointer to a va_list for the arguments in the message. TheInvocationResult that is returned
defines the values to be returned from the invocation that is being forwarded.

Note that an object implementing a methodfoo is different from an object respodingTRUEwhen
askedrespondsTo . The latter can be overridden while the former is a direct check, which is much
faster.

This seemingly nasty low-level approach is used for fast dispatching oftoo.RemoteProxy method
invocations and for invocations on curriedtom.Invocation objects.

• With everything having failed so far, the whole invocation is packed into a newly createdInvo-

cation object, and sent to the receiver with aforwardInvocation method. The receiver can
then decide what to do with it. The default implementation by the instance All raises aprogram-

condition for the selector and target of theInvocation :

InvocationResult
forwardInvocation Invocation invocation

{
[[SelectorCondition

65

Chapter 6. Advanced topics

for self class program-condition
message "unrecognized selector"
selector [invocation selector]]

raise];
}

The forwardInvocation mechanism can also be used to mimic the functionality of thefor-

wardDelegate method. If theforwardDelegate would return the objectmy_delegate , the
following method would provide identical functionality:

InvocationResult
forwardInvocation Invocation invocation

{
= [invocation fireAt my_delegate];

}

Speed
Everything comes with a price, especially flexibility.

I’ve done some speed tests (on a PII/266, Debian 1.3.x, gcc 2.7.2.1) with various ways to invoke a
method, with various number of arguments, with the results shown in the table below.

• x is a direct method invocation,

[foo do (1, 2)];

• p is a perform,

[foo perform selector ("(v)do(ii)") with (1, 2)];

• d is through aforwardDelegate . The invocation looks like that ofx, but it is invoked on an object
that does not implement the method, but does provide the following method (an instance ofSub

does implement the desired method).

Sub
forwardDelegate selector s

{
= fwd_delegate;

}

• i is through aforwardInvocation . Similar tod, but instead offorwardDelegate , the following
method is implemented:

InvocationResult
forwardInvocation Invocation invocation

{
= [invocation fireAt fwd_delegate];

}

66

Chapter 6. Advanced topics

Table 6-3. Speed of method invocation

how #inv time

0 1 2 3 4 5 6

x 10^8 12.58 12.93 12.58 12.53 13.69 14.00 13.91

p 10^7 11.15 11.77 12.74 13.80 14.88 15.63 17.32

d 10^7 11.62 12.75 13.75 15.11 15.81 16.61 18.52

i 10^6 15.96 17.44 17.80 18.14 18.51 18.87 19.22

* In Table 6-3, using themorerows attribute causes jade/html to produce incorrect tables, and jade/tex to die.

In Table 6-3, ‘how’ describes how the method is invoked, ‘#inv’ is the number of invocations per-
formed in the given time, and ‘time’ is the CPU time needed to run the test for the indicated number
of arguments.

Note that for everyforwardInvocation dispatch, anInvocation object and anInvocationRe-

sult is created, and approximately half the time taken by the test runs is spent in garbage collecting
those objects. Also note that the mechanism underlyingperform with and forwardDelegate ,
does not createInvocationResult objects for void methods, as was the case in the test.

The numbers come down to the following: in the time that you can do 1forwardInvocation , you
can do 10forwardDelegate calls or invocations throughperform with , and 100 direct method
invocations.

I don’t know if these numbers are good or bad; I don’t have numbers to compare them with (maybe
testing Objective-C Rhapsody on a PII/266?). It does show, that usingforwardDelegate is much
faster than having anInvocation object be created and forwarding that. Which is what it was sup-
posed to do. (And it can probably be made much faster when using__builtin_apply_args in
trt_forward , instead of going throughperform_args .)

67

II. TOM: The Libraries

68

Chapter 7. The TOM Runtime Library
The TOM Runtime Library is the library that enables TOM programs to run. It contains the data
structures needed for every method invocation; it performs object allocation, garbage collection, etc.

In C, all functionality of TOM and the TOM runtime can be obtained by including<tom/util.h> .
This will also include the header generated by the resolver for the tom unit.

Program startup
From the start of a TOM program, the following sequence of actions takes place:

• If the program was not statically resolved, build the method dispatch tables and other runtime
structures needed but not built by the resolver. When run, this installs what the GNU Objective-
C runtime very nicely calls the ‘premature’ dispatch table for each object. Upon invocation of a
method through said table, the actual dispatch table will be built and put in place.

• Collect the arguments to the program, excluding C’sargv[0] into tom.Runtime.all_arguments ,
usingtom.ByteString objects . Set thetom.Runtime.program_name andtom.Runtime.long_program_name

from argv[0] .

• Initialize thein , out , anderr streams oftom.stdio .

• Invoke the load imps, i.e. every class method with a signature matchingvoid load Array ar-

guments , with the arguments collected from the command line. A load imp is allowed to recognize
options and remove them from the arguments. It is customary for such options to start with a colon
(‘:’) instead of a dash (‘-’).

• Store the array of remaining arguments intom.Runtime.arguments .

• Invoke the following method of theclass tom.Runtime :

int
start (All, selector) (object, sel)

arguments Array arguments;

where thesel is the selector for the main method to be invoked, which normally isint main

Array arguments . Theobject is the receiver of this message, normally a class object.

• When the previous method invocation returns, all open streams are flushed and the value it returned
it used as the exit code.

* [Streams are not yet flushed.]

C names for TOM types
Table 7-1 lists the C types to use for the TOM types.

69

Chapter 7. The TOM Runtime Library

Table 7-1. C names for TOM types

C TOM

void void

tom_byte byte boolean

tom_char char

tom_int int

tom_long long

tom_float float

tom_double double

void * pointer

selector selector

tom_object any object reference

Selectors
In the runtime library, a selector is identifyable by a string which is called the selector’s name. This
name consists of the name parts and an abbreviated form of the argument and return types. The
abbreviated type names are:

Table 7-2. Selector type encodings

char type

v void

o boolean

b byte

c char

i int

l long

f float

d double

p pointer

s selector

r object reference

x dynamic

The following table shows examples: for several method declarations the name of the corresponding

70

Chapter 7. The TOM Runtime Library

selector.

* [Grammar desired.]

Table 7-3. Example selector name encodings

method selector

int value; "(i)value"

void setValue float d; "(v)setValue(d)"

(Foo) bar (int, double) (a, b) with:

int c = 0;

"(r)bar(id)with:(i)"

* [Actually, this is the future syntax. Currently, it is ambiguous, hence replaceable.]

In C, a selector is defined by a struct; Thestruct selector is the direct implementation of the
TOM selectors.

typedef struct selector
{

unsigned int sel_id;

struct name name;

struct trt_selector_args *in, *out;
} *selector;

sel_id

This is the unique identity of a selector. All selectors have such an identity in the closed enumer-
ation of all selectors. Every two selectors with identical name, argument types and return types
have the same identity. If no dynamic loading has taken place, the following is true for any two
selectorsa andb:

* [Actually, it isn’t any longer.]

a->sel_id == b->sel_id <-> a == b.

name

the name of the selector. This has two fields:s being the zero terminated string, andlen being
its length.

in

out

the selector argument descriptions for the arguments to (in) and return value from (out) methods
denoted by this selector.

71

Chapter 7. The TOM Runtime Library

Message dispatching
This section explains how messages can be dispatched, i.e. how the implementation of a method can
be invoked, given the message.

A method is translated by the compiler to a C function with essentially the same arguments as
the method, with two mandatory additions and some additions depending on the return type of the
method. For the method

(boolean, Any) next

defined for theinstance tom.Enumerator , the C function implementing this is

tom_byte
i_tom_Enumerator_or_next (tom_object self,

selector cmd,
tom_object *ret1)

@end example

As can be seen, the first element of the tuple return type is the type returned by the implementation C
function. Such a C function implementing a method always has two ‘implicit’ first arguments:self

being the object receiving the message, andcmd being the message sent. Following these two are
the ‘normal’ arguments to the method, which are none in this case. Finally, any of the remaining
return values are to be returned in the pointer arguments supplied after the normal arguments. In the
example, a pointer for returning the second tuple element is provided.

A message is dispatched by invoking the method implementation for the given(self, cmd) pair.
The lookup of the implementation, i.e. the pointer to the C function, can be done in three different
ways:

lookup

Call the functiontrt_lookup with the receiver and the selector to be invoked (i.e. the values to
be passed forself andcmd). trt_lookup returns a function pointer to the method implemen-
tation. Invoke that function with the arguments.

direct

A direct lookup is equivalent to inlining thetrt_lookup function. This is a rather unwise way
of invoking a method as it considerably increases code size.

send

When usingtrt_send to dispatch a message, the functiontrt_send is invoked with all the
arguments to be passed to the method implementation.trt_send will perform the lookup and
jump directly to the implementation.

These different dispatching mechanisms can be selected by an option to tomc. These options are not
yet implemented in tesla, the new TOM compiler. When using tesla, they must be selected when con-

72

Chapter 7. The TOM Runtime Library

figuring trt. They are described here for explanatory purposes; never implement any of these directly
in your C code; the next section explains how to do that portably.

Sending is the preferred way of dispatching messages, though possibly not present on all TOM im-
plementations as it involves an assembly language routine. Also note that there are dependencies of
the applicability of some dispatching mechanisms. For example, it is impossible to use sending on
dynamically loaded code onhppa-hpux machines. This is not a TOM feature but due to the inter-
space stubs needed by the hpux shared library interspace calls, added to the fact that a callee stores
the return program counter in the stack frame of the caller.

When doing profiling on a TOM program, all code should really use the lookup way of dispatching
instead of sending to dispatch. Otherwise, all methods will be reported to only invoketrt_send , and
trt_send will be reported as the culprit which invoked every method and thus effectively void the
use of the call graph.

Messaging from C
To invoke a method of a TOM object, use theTRT_SENDmacro. For example, to retrieve the length
of an arraya:

tom_object a = ...;

tom_int len = TRT_SEND (, a, SEL (_i_length));

The second argument toTRT_SENDis the receiver of the message. The third argument is the selector
to be sent. A selector is an invocation of theSEL macro, with as argument the selector’s name with
any nasty characters replaced by an underscore.

A more elborate example shows almost all pitfalls when usingTRT_SEND. In this example the method
(int, float) split float f is invoked, which in TOM would be written as

SomeClass receiver = ...;
float fractional, number = ...;
int integer;

(integer, fractional) = [receiver split number]

is invoked from C as follows:

tom_object receiver = ...;
tom_float fractional, number = ...;
tom_int integer;

integer = TRT_SEND ((tom_int (*) (tom_object, selector,
tom_float, tom_float *)),

receiver, SEL (_if__split_f), number, &fractional);

73

Chapter 7. The TOM Runtime Library

The first argument toTRT_SENDis a cast to the type of the function actually being invoked. This cast
is mandatory if the return type of the function (implementing the method) invoked is not a tom_int.
The argument prototypes in the cast are mandatory when needed to prevent the C compiler from doing
undesirable type conversions due to it not having seen a full prototype of the function being invoked.
For instance, usually, tom_float is simply a float, which the compiler will promote to a double when
passed as an argument for which the prototype has not been seen.

This example also shows that for a method returning a tuple, the first element of the tuple (or the first
element thereof in case it is a tuple too (or...)) is actually returned from the C function implementation,
and any remaining elements of the tuple returned are stored in variables the address’ of which has been
passed as ‘invisible’ trailing arguments.

More types
This section lists various types that are used by the runtime library.

struct name

struct name
{

char *s;
int len;

};

Thes points to the zero-terminated C byte-string holding the name. Thelen is the length ofs .

trt_selector_args

struct trt_selector_args
{

int num;

enum trt_type_encoding args[0];
};

A trt_selector_args describes the arguments to or return value from a method. In this context,
all values are de-tupled and concatenated. Thus, a selector accepting an int and a float has the same
argument description as a selector accepting a tuple (int, float). For the arguments, this excludes the
implicit two first arguments,self andcmd.

num

The number of entries inargs .

74

Chapter 7. The TOM Runtime Library

args

The description for each flat argument.

enum trt_type_encoding

enum trt_type_encoding
{

TRT_TE_VOID,
TRT_TE_BOOLEAN,
TRT_TE_BYTE,
TRT_TE_CHAR,
TRT_TE_INT,
TRT_TE_LONG,
TRT_TE_FLOAT,
TRT_TE_DOUBLE,
TRT_TE_POINTER,
TRT_TE_SELECTOR,
TRT_TE_REFERENCE,
TRT_TE_DYNAMIC,

};

The trt_type_encoding is used in the definition of argument and return types of selectors.

Functions
This section describes functions and macros defined by the TOM runtime, or any of its C header files.

byte_string_with_c_string

tom_object
byte_string_with_c_string (const char *s);

Return a newly allocated instance oftom.ByteString holding the characters from the zero-terminated
strings . Obviously, the trailing zero is not contained in the returnedByteString .

byte_string_with_string

tom_object
byte_string_with_string (const char *s, int len);

75

Chapter 7. The TOM Runtime Library

Return a newly allocated instance oftom.ByteString holding the firstlen characters pointed to by
s .

trt_assign_local_var

TRT_INLINE void *
trt_assign_local_var (void *object)

This function must be invoked if theobject has just been assigned to a local variable and it is to live
over a method invocation. Note thatthis is only necessary iffthe stack protection policy implemented
by the garbage collector (configured when building the TOM tools) isSP_PROTECTas opposed to
SP_MARK(seeconfig/default.h andconfig/target.h), so, probably (ahem), it isn’t necessary.

* [Obviously, the type of the argument should be tom_object instead of void *.]

trt_assign_object_var

TRT_INLINE void *
trt_assign_object_var (void *object, void *value);

This function must be invoked if the object pointed to byvalue has just been assigned to an object
variable of theobject . This is needed in case the garbage collector performs non-atomic runs. Thus,
if you’re writing library code in C, youmustuse this function. The compiler outputs calls to this
function if the flag-fincremental-gc is provided on the command line (@pxref{Invoking tomc}).
This feature is not supported yet in tesla.

* [Obviously, the type of the two arguments should be tom_object instead of void *. However, since debugging a TOM program

currently means debugging the (not so unreadable, to the trained eye at least) C code output by the compiler, the compiler

types each object in the output to its C struct (as far as the compiler can know the layout at compile time). Hence, void * is

used in some places where really tom_object should be used, to avoid numerous casts or warnings.]

trt_ext_address

void *
trt_ext_address (tom_object self, int extension_id);

trt_ext_address returns a pointer to the state information of the objectself for the state intro-
duced by the extension with the identityextension_id . This is the only legitimate way to obtain
a pointer to some state held by some object.The only exception to this rule is the state information
introduced by the State class (or instance), which, by definition, resides at offset 0 fromself .

76

Chapter 7. The TOM Runtime Library

trt_selector_args_match

int
trt_selector_args_match (struct trt_selector_args *a,

struct trt_selector_args *b);

Return 1 if the number and types of the elements ina andb match, or 0 otherwise.

Normally, this test is very fast, since the resolver guarantees that for every pair of selector argument
descriptions,a andb, if trt_selector_args_match returns1, thea == b . However, in the con-
text of dynamic-loading, selector argument descriptions can guaranteed to be unique, thus making
trt_selector_args_match slightly more expensive.

trt_selector_named

selector *
trt_selector_named (char *s, int len);

Return the selector whose name matches the name held in the firstlen bytes pointed to bys . Return
NULL if such a selector does not exist.

trt_type_name

char *
trt_type_name (enum trt_type_encoding type);

Return a zero terminated C string holding the name of thetype . If the type is not a valid value, the
string"<unknown type %d>" is returned, with the numeric value of thetype replacing the%d.

* [In the case of an unknown type being returned this function leaks memory, since the string returned is malloced.]

xmalloc

void *xmalloc (unsigned int n);
void *xcalloc (unsigned int n, unsigned int m);
void *xrealloc (void *p, unsigned int n);
void xfree (void *p);

Use these allocation manipulation routines instead of the x-less counterparts they are wrapping, since
the ‘x’ is a clue on some machines.

77

Chapter 8. Unit tom

The tom unit is that standard TOM library.

File tom/All

class tom.All
TheAll class does not serve a purpose. It is the statelessAll instance which is inherited by both the
State class and instance, and, supposedly, by all objects not inheriting fromState .

instance tom.All
inherits

State supers:Conditions , Constants

variables

const TRUE = !0;

The boolean truth.

const FALSE = !TRUE;

The boolean non-truth.

const YES = TRUE;

An alternative name forTRUE.

const NO = FALSE;

An alternative name forFALSE.

methods

String

description;

Return a string informally describing this object.

This returns the result of having the receiverwrite itself into a newString which is subsequently
returned.

boolean (result)
eq All other

post
self == other == result;

78

Chapter 8. Unittom

The selector equivalent of ‘==’, i.e. the returnedresult is TRUE iff the receiving object and the
other object are the same object.

The postcondition states that this method is not overridable.

boolean (result)
equal id other

post
self == other -> result;

ReturnTRUEwhen the receiving object considers itself equal to the other object. For instance, two
Number objects holding the same value will returnTRUE.

The receiving object should be able to assume theother object is of the same kind, or at least shares
with it a common superclass, as in the case of, for instance,CharString andByteString which
are both subclasses ofString and can compare with each other.

As stated by the postcondition, an object must beequal to itself. This knowledge may be used by a
caller to prevent a method invocation.

int
hash;

Return a hash value for the receiving object. The default implementation returns some bit pattern
deduced fromself .

Two distinct objects considering themselvesequal should also return the samehash value.

int
hashq;

Hash the address of the receiving object. For classes not redefininghash , this performs the same
function.

id (self)
self;

Return the receiving object.

deferred OutputStream

write OutputStream s;

All objects, even classes, know how to (descriptively) write themselves to a stream.

A default implementation of this method is provided by theState class and instance.

deferred boolean
classp;

ReturnTRUEiff the receiving object is a class object. An implementation for this method is provided
by theState class and instance.

79

Chapter 8. Unittom

boolean
isKindOf class (State) a_class;

ReturnTRUEiff the class of the receiving object is a subclass of theclass .

deferred class (id)
kind;

Return the class of the receiving object.

boolean
respondsTo selector sel;

ReturnYES iff the selectorsel can be safely sent to the receiver. The default implementation only
checks whether the receiving object provides a direct implementation of thesel ; any checking
through an alternativeforwardDelegate should be performed by the object itself.

All

forwardDelegate selector sel;

Return an object of which the method indicated by the selectorsel should be invoked. This method is
invoked if the receiving object does not directly respond tosel . The default implementation returns
self . The object returned could be a delegate which is to act upon behalf of the receiving object for
the intended call of the selectorsel .

InvocationResult

forwardInvocation Invocation invocation;

Return the result of forwarding theinvocation , for example by firing it at an appropriate object.
The default implementation raises aprogram-condition SelectorCondition .

dynamic
perform selector sel

: Array arguments = nil;

Send the receiving object a message with the selectorsel and the, possibly unboxed,arguments .
The number of elements ofarguments must match the number of arguments dictated by the selector.

Unboxing the arguments means that if anint argument is needed, theint at int method will be
used to retrieve the argument from thearguments , possibly resulting in the object retrieved being
asked for itsintValue .

dynamic
perform selector sel

with dynamic arguments;

Send the receiving object a message with the selectorsel and thearguments . The number ofar-

guments must match the number of arguments dictated by the selector.

80

Chapter 8. Unittom

If the selectorsel accepts more than one argument,arguments should be a tuple. The tuple-ization
of the actual arguments to the selectorsel and the elements of thearguments tuple is ignored.

Thread

performInThread selector sel
with dynamic arguments;

Like perform with but create a new thread for the performance. Return the newly created thread or
nil upon failure.

boolean
invocationp;

ReturnYES iff the receiving object is anInvocation . Only Invocation objects are supposed to
returnYES.

dynamic
valueOfVariableNamed ByteString name;

Retrieve the value of the variable with the indicatedname. If there is more than one variable with the
same name and expected return type, the first is returned.

void
setValue dynamic value

ofVariableNamed ByteString name;

Set the value of the variable namedname in the receiving object to thevalue . It is an error if the type
of the value does not exactly match the actual type of the variable: no conversion is performed.

int
typeOfVariableNamed String name

from Extension ext
pre

[[self stateExtensions] memq ext] != nil;

Return the type of the variable namedname as introduced by the extensionext . This returns one of
theTYPEDESC_* Constants .

Any

valueOfVariableNamed String name
from Extension ext

pre
[[self stateExtensions] memq ext] != nil;

Return the boxed value of the variable namedname as introduced by the extensionext .

Extension

extensionNamed String name
inherited: boolean check_supers = NO;

81

Chapter 8. Unittom

Return theExtension object of this object for the extension namedname. If name == nil , the
main extension is returned.

Indexed

extensions;

Return an array of the extensions of the receiving object, not including the extensions introduced by
superclasses.

Indexed

allExtensions;

Return an array of all extensions of the receiving object. This includes the extensions introduced by
superclasses.

Indexed

stateExtensions;

Return an array of state introducing extensions of the receiving object. This includes the extensions
introduced by superclasses.

void
throw dynamic value;

Throw execution to the catch specified for the receiving object, returning thevalue . If the value is
void , the default value for the type to be returned by the catch is returned.

void
preconditionFailed selector sel;

This method is invoked for a failed precondition of a method invocation of the receiving object.
The method is identified by theselector sel . The default implementation raises acondition-

condition SelectorCondition .

Method precondition checking is enabled is the option:cc-pre is provided on the program’s com-
mand line. The code for precondition checking is normally compiled in by the compiler. This code is
omitted by passing the-fno-checks or -fno-pre-checks option to the compiler.

void
postconditionFailed selector sel;

This method is invoked for a failed postcondition of a method invocation of the receiving object.
The method is identified by theselector sel . The default implementation raises acondition-

condition SelectorCondition .

Similar to precondition checking, postcondition checking is enabled by the:cc-post option on
the command line of this program and not providing-fno-checks or -fno-post-checks to the
compiler.

protected void

82

Chapter 8. Unittom

unimplemented selector sel
message: String message = nil;

Moan about the selectorsel not yet having been implemented by the receiving object. This raises an
unimplemented SelectorCondition .

protected void
shouldNotImplement selector sel;

Contrary to what the inheritance tells you about theselector sel being invokable for the receiving
object, that object thinks otherwise.

protected void
subclassResponsibility selector sel;

Moan about the receiving object defining a method for the selectorsel , but actually the implementa-
tion of the method by the object thinks it should be implemented by a subclass.

boolean
consp;

ReturnTRUEiff the receiving object is aCons cell. The default implementation returnsNO.

OutputStream

writeListElement OutputStream s;

Finish outputing the list, of which the receiving object is the tail, to the streams . The default imple-
mentation writes itself as a dotted cdr at the end of the list.

deferred boolean
persistent-coding-p;

ReturnYES iff the receiving object is a persistent object. This is significant for distributed objects,
where class objects andSelector instances must be persistent across different invocations.

pointer
address;

Return the address of the receiving object as a pointer. This is here solely to be able to print the address
of objects, for debugging purposes.

boolean
coding-permanent-object-p;

ReturnYES if the receiving object should be maintained in the permanent object store when coding.
This does not matter for archiving; it makes a difference for DO. Class objects andSelector s return
TRUEfor this; the default implementation returnsFALSE.

void
dump (boolean, boolean) (allow_self, allow_simple)

83

Chapter 8. Unittom

level int level;

Dump the graph of which the receiving object is the root to stderr.

void
dump;

Like void dump (boolean, boolean) , allowing self/simple printing and doing infinite recursion.

boolean
dump_simple_p;

Return TRUE iff the receiving object can be dumped simply. This will be true for class objects,
strings, numbers, etc. This method is overridden bydump_self_p . The default implementation re-
turnsFALSE.

boolean
dump_self_p;

ReturnTRUEiff the receiving object wants to dump itself instead of having its variables scrutinized.
This is used by collection objects and others which employpointer typed variables. The default
implementation returnsFALSE.

OutputStream

dump_simple OutputStream s;

Dump the receiving object to the streams , simply. This is only ever invoked if the object returnsYES

for dump_simple_p . The default implementation simply printsself to the stream.

protected void
dumpSelf MutableKeyed done

indent MutableByteString prefix
simple boolean allow_simple

level int level
to OutputStream s;

Have the receiving object dump itself. Only ever invoked if it returnsTRUEfor dump_self_p . The
default implementation invokesshouldNotImplement .

deferred protected void
dump MutableKeyed done

indent MutableByteString prefix
simple boolean allow_simple

level int level
to OutputStream s;

Hard worker fordump.

boolean
gc_dead_p;

84

Chapter 8. Unittom

ReturnYESiff the receiving object has not yet been marked alive during the current run of the garbage
collector. Class objects are never dead.

void
gc_mark;

Mark the receiving object as being alive. This method is only needed by the container garbage collec-
tion scheme.

This method is invoked during Garbage Collection. During GC, theRuntime library is running in
panic mode. If anything goes wrong, for instance a condition is signaled or raised, the program will
abort. Moral: be careful during garbage collection.

File tom/Array

class tom.Array
Array is the superclass of all arrays; it is anIndexed Collection

inherits

State supers:State , Indexed , C

instance tom.Array
variables

public int length;

The number of elements in the array.

pointer contents;

A pointer to the elements of this array.

methods

void
dealloc;

Clean up the memory this array is using.

deferred int
elementByteSize;

Return the size, in bytes, of the elements contained in thisArray .

id
initAsCopyOf id other;

85

Chapter 8. Unittom

Get the elements from theother , and invoke[self initCopy] .

id (self)
initCopy;

Duplicate ourcontents since that is what we own.

id (self)
initWith int n

at pointer addr;

Initialize with the indicated pointer and integer for contents and length.

Any

member All object;

Return the element contained in thisArray , which isequal to theobject .

Any

memq All object;

Like member, but the element is identified on reference equality.

deferred (pointer, int) (address, number)
pointerToElements (int, int) (start, len)

pre
start >= 0 && len >= -1

post
number >= 0 && !number == !address;

Return theaddress of the first element of the receiving array in the range(start, len) , and the
number of elements in that range.

void
makeVanishingElementsPerform Invocation inv;

Like makeElementsPerform , but allow the element currently messaged to vanish from this array.

File tom/Bag

class tom.Bag
A Bag is aKeyed Collection .

inherits

State supers:HashTable , Keyed

86

Chapter 8. Unittom

instance tom.Bag
methods

int
at All object;

Return the number of times the elementkey is present in the bag.

Any

at All object;

Return theobject if present;nil otherwise.

Enumerator

enumerator;

Undocumented.

id
initWithEnumerator Enumerator e;

Undocumented.

class tom.MutableBag
inherits

State supers:Bag, MutableKeyed

instance tom.MutableBag
methods

void
add All object

count int num;

Add theobject num times.

void
add All object;

Add theobject .

87

Chapter 8. Unittom

File tom/Block

class tom.Block
inherits

State supers:State , Conditions , Enumerator

variables

static boolean check_block_selectors;

methods

void
load Array arguments;

Initialize the static control variables (onlycheck_block_selectors up to now).

instance tom.Block
variables

pointer code;

Pointer to the actual code (a C function).

selector arguments;

The selector of theeval method of this block, which includes the formal argument and return
types.

pointer variables;

If this block employs block variables, thevariables points to a struct holding those variables.

pointer environment;

Pointer to the local variables of the enclosing method that are referenced from this block. This
is not set when the block does not reference its environment; it is cleared when the environ-
ment is exited. A block that uses its environment checks upon entry to its eval method that the
environment is still available.

pointer block_description;

A description of the variables invariables .

methods

id (self)

88

Chapter 8. Unittom

initWithCode pointer block_c_function
trigger selector full_arguments
context pointer context

variables (pointer, pointer) (vars, desc);

Designated initializer.

protected boolean (mismatch)
arguments_fail (selector, selector) (formal, actual)

pre
formal != actual;

ReturnFALSE if the arguments in theformal andactual selectors match, or match enough. Raise
a program-condition for a mismatch (and returnTRUE). The precondition dictates that the fast
check should be done autonomously.

dynamic
eval dynamic arguments;

Genericeval method. Faster versions, which are specialized on their arguments, are below.

void
eval;

The first of many (similar) type-specificeval methods.

int (result)
eval int a1;

Undocumented.

void
eval int a1;

Undocumented.

Any (result)
eval All a1;

Undocumented.

Any (result)
eval;

Undocumented.

(boolean, Any) (remaining, value)
next;

Undocumented.

89

Chapter 8. Unittom

void
dealloc;

Release the memory used by this block.

void
gc_mark_elements;

Mark the block variables if needed.

void
invalidate;

Be informed that the block is going out of scope, invalidating theenvironment .

File tom/BucketDictElement

class tom.BucketDictElement
inherits

State supers:BucketElement

instance tom.BucketDictElement
variables

All key;

This bucket element’s key.

public Any value;

The value in this bucket element.

methods

id
initWith (All , All) (k, v);

Designated initializer.

void
do Block block;

Apple theblock to value and pass tonext .

void
doKeys Block block;

90

Chapter 8. Unittom

Apple theblock to key and pass tonext .

Any

key;

Return thekey , with a suitable type.

Any

member All k;

Return the value associated with the keyk , asking thenext element if this element does not match.

The implementation byBucketDictElement , considers itskey and returns itsvalue .

Any

member All k
equal selector cmp;

Like member, but using the selectorcmp to have the objects compare themselves.

Any

memq All k;

Undocumented.

int
add (All , All) (k, v);

Add the(k, v) pair to this bucket, if the key is not already present. Return the number by which this
bucket’s length has increased.

int
addq (All , All) (k, v);

Add the(k, v) pair to this bucket, if the key is not already present. Return the number by which this
bucket’s length has increased.

(id, int)
remove All k;

Remove the object with the key equal tok . Return the replacement for this element, and the number
of bucket elements that were removed from this bucket list (max 1).

(id, int)
removeq All k;

Remove the object with the identical keyk . Return the replacement for this element, and the number
of bucket elements that were removed from this bucket list (max 1).

void
encodeUsingCoder Encoder coder;

91

Chapter 8. Unittom

Undocumented.

void
initWithCoder Decoder coder;

Undocumented.

(id, int)
gc_mark_values;

Starting with this bucket element, remove the objects of which thevalue is gc_dead . Return the
replacement for this element, and the number of bucket elements that were removed from this bucket
list.

(id, int)
gc_mark_keys;

Similar togc_mark_values , but consider the liveness of thekey instead of thevalue .

int
rehash;

Rehash the key of the receiving element.

int
rehashq;

Rehashq the key of the receiving element.

File tom/BucketElement

class tom.BucketElement
inherits

State supers:State

instance tom.BucketElement
variables

public id next;

The next element in this bucket.

methods

void

92

Chapter 8. Unittom

do Block block;

Apple theblock to self and pass tonext .

Any

member All key
pre

key != nil;

Return the value associated with thekey , asking thenext element if this element does not match.

The implementation byBucketElement considers itself to be both the key and the value.

Any

member All key
equal selector cmp

pre
key != nil;

Like member, but using the selectorcmp to have the objects compare themselves.

Any

memq All key
pre

key != nil;

Like member, but use reference equality instead of theequal method.

int
addElement id elt;

Add theelt to this bucket, if it is not already present. Return the number by which this bucket’s
length has increased.

int
addqElement id elt;

Add theelt to this bucket, if it is not already present. Return the number by which this bucket’s
length has increased.

(id, int) (replacement, decrease)
remove id elt

post
!decrease -> replacement == self;

Remove theelt from this bucket, if present. Return the number by which the length of this bucket
has decreased, and the replacement remainder of the bucket list.

(id, int) (replacement, decrease)
removeq id elt

93

Chapter 8. Unittom

post
!decrease -> replacement == self;

Remove theelt from this bucket, if present. Return the number by which the length of this bucket
has decreased, and the replacement remainder of the bucket list.

void
resizing_feed HashTable ht;

For resizing a hashtable, feed this element and those following elements, to the hashtable using the
hashtable’sresizing_add .

void
resizing_add id n;

While resizing a hashtable, accept a newnext .

int
rehash;

Rehash the key of the receiving element.

int
rehashq;

Rehashq the key of the receiving element.

void
encodeUsingCoder Encoder coder;

Undocumented.

void
initWithCoder Decoder coder;

Undocumented.

(id, int)
gc_mark_values;

Starting with this bucket element, remove those bucket elements of which the objects aregc_dead .
Return the replacement for this element, and the number of bucket elements that were removed from
this bucket list.

94

Chapter 8. Unittom

File tom/BucketIntDictElement

class tom.BucketIntDictElement
inherits

State supers:BucketElement

instance tom.BucketIntDictElement
variables

public int key;

This bucket element’s key.

public Any value;

The value in this bucket element.

methods

id
initWith (int, All) (k, v);

Designated initializer.

Any

member int k;

Return the value associated with the keyk , asking thenext element if this element does not match.

The implementation byBucketIntDictElement , considers itskey and returns itsvalue .

Any

memq int k;

Undocumented.

int
add (int, All) (k, v);

Add the(k, v) pair to this bucket, if the key is not already present. Return the number by which this
bucket’s length has increased.

int
addq (int, All) (k, v);

Add the(k, v) pair to this bucket, if the key is not already present. Return the number by which this
bucket’s length has increased.

95

Chapter 8. Unittom

int
rehash;

Return the integer key.

int
rehashq;

Return the integer key.

(id, int)
remove int k;

Remove the object with the keyk . Return the replacement for this element, and the number of bucket
elements that were removed from this bucket list (max 1).

(id, int)
gc_mark_values;

Starting with this bucket element, remove the objects of which thevalue is gc_dead . Return the
replacement for this element, and the number of bucket elements that were removed from this bucket
list.

File tom/BucketPDictElement

class tom.BucketPointerDictElement
inherits

State supers:BucketElement

instance tom.BucketPointerDictElement
variables

public pointer key;

This bucket element’s key.

public Any value;

The value in this bucket element.

methods

id
initWith (pointer, All) (k, v);

96

Chapter 8. Unittom

Designated initializer.

Any

member pointer k;

Return the value associated with the keyk , asking thenext element if this element does not match.

The implementation byBucketDictElement , considers itskey and returns itsvalue .

int
add (pointer, All) (k, v);

Add the(k, v) pair to this bucket, if the key is not already present. Return the number by which this
bucket’s length has increased.

(id, int)
gc_mark_values;

Starting with this bucket element, remove the objects of which thevalue is gc_dead . Return the
replacement for this element, and the number of bucket elements that were removed from this bucket
list.

int (code)
rehash;

Rehash the pointer key.

int (code)
rehashq;

Rehash the pointer key.

(id, int)
remove pointer k;

Remove the object with the keyk . Return the replacement for this element, and the number of bucket
elements that were removed from this bucket list (max 1).

File tom/BucketSetElement

class tom.BucketSetElement
inherits

State supers:BucketElement

97

Chapter 8. Unittom

instance tom.BucketSetElement
variables

Any value;

The key/value in this bucket element.

methods

void
do Block block;

Apple theblock to value and pass tonext .

Any

key;

Undocumented.

id
initWith All v;

Designated initializer.

Any

member All key;

Return the value associated with thekey , asking thenext element if this element does not match.

The implementation byBucketSetElement , considers itsvalue as the both the key and the value.

Any

member All key
equal selector cmp;

Like member, but using the selectorcmp to have the objects compare themselves.

Any

memq All key;

Undocumented.

int
add All key;

Add thekey to this bucket, if it is not already present. Return the number by which this bucket’s
length has increased.

int
addq All key;

98

Chapter 8. Unittom

Add thekey to this bucket, if it is not already present. Return the number by which this bucket’s
length has increased.

(id, int) (replacement, decrease)
remove All key;

Remove this bucket, if it holds thekey . Return the number by which the length of this bucket list has
decreased, and the replacement remainder of the bucket list.

(id, int) (replacement, decrease)
removeq All key;

Remove this bucket, if it holds thekey . Return the number by which the length of this bucket list has
decreased, and the replacement remainder of the bucket list.

void
encodeUsingCoder Encoder coder;

Undocumented.

void
initWithCoder Decoder coder;

Undocumented.

void
gc_mark_containers;

Tell thevalue to gc_container_mark_elements .

(id, int)
gc_mark_values;

Starting with this bucket element, remove the objects of which thevalue is gc_dead . Return the
replacement for this element, and the number of bucket elements that were removed from this bucket
list.

int
rehash;

Rehash the key of the receiving element.

int
rehashq;

Rehashq the key of the receiving element.

99

Chapter 8. Unittom

File tom/Bundle

class tom.Bundle
inherits

State supers:State , Constants

variables

static Bundle main;

The main bundle, i.e. the bundle describing the program and the units.

static MutableIndexed units_path;

The path as registered by the units.

methods

OutputStream (s)
help OutputStream s
done MutableKeyed done;

Hook for responding to command line argument:help .

pointer
loadUnit String unit

fromObject String object;

Load theunit from theobject , returning the underlying operating system handle upon success, or
the NULL pointer upon failure. Anerror is signaled in case of the latter. Theunit is the name of
the unit supposedly contained in theobject . This unit, when present, will be resolved.

pointer
load String object;

Derive the unit name from theobject name and invokeloadUnit fromObject .

void
load MutableArray arguments;

Accept:main-bundle-dir option and allocate themain bundle if found.

String

locate-file String file
extension String ext

with-version: String version = nil;

Forward this to the main bundle.

100

Chapter 8. Unittom

instance (id)
main;

Return the main bundle, creating it iff necessary.

void
registerUnitDirectory String dir;

Register thedir as to contain resources for one of the units.

instance tom.Bundle
variables

public String directory;

The directory.

pointer handle;

Iff not the null pointer, the handle (in the underlying operating system) to the code loaded for
this bundle. Iff it is the null pointer, the code has not (yet) been loaded.

methods

id (self)
init String d;

Undocumented.

String

locate-file String file
extension String ext

with-version: String version = nil;

Locate thefile for the version in this bundle. If not found, search the main bundle. Iff still not
found, it is searched for in the registered unit directories.

The extensionext , if not nil , is appended to thefile , with a dot (.) in between.

File tom/ByteArray

class tom.ByteArray
Like the CharArray , the ByteArray is a particular kind ofArray , which is here for abstraction
purposes, but which is never actually used, since theByteString holds the same kind of state, but
provides much more functionality.

101

Chapter 8. Unittom

inherits

State supers:Array

instance tom.ByteArray
methods

protected id
initWithEnumerator Enumerator e;

Undocumented.

Any

at int index;

Undocumented.

byte
at int index;

Undocumented.

char
at int index;

Undocumented.

int
at int index;

Undocumented.

long
at int index;

Undocumented.

float
at int index;

Undocumented.

double
at int index;

Undocumented.

int
elementByteSize;

102

Chapter 8. Unittom

Undocumented.

int
hash;

Undocumented.

(pointer, int)
pointerToElements (int, int) (start, len);

Undocumented.

int
writeRange (int, int) (start, len)

into MutableByteArray destination
at int position;

Undocumented.

void
encodeUsingCoder Encoder coder;

Undocumented.

void
initWithCoder Decoder coder;

Undocumented.

class (State)
mutableCopyClass;

Return theMutableByteArray class.

File tom/ByteStream

class tom.ByteStream
Instances of theByteStream class are an abstraction of the UNIX file descriptors.

inherits

State supers:Descriptor , InputOutputStream

instance tom.ByteStream
methods

103

Chapter 8. Unittom

byte
read;

Read a byte and return it, raising an exception on end-of-file or error.

int
read;

Read a byte and return it, returningEOFon end-of-file.

int
readRange (int, int) (start, num)

into MutableByteArray buffer;

Have thebuffer read at mostnumbytes from the receivingByteStream starting atstart .

void
write byte b;

Undocumented.

int
write byte b;

Undocumented.

int
writeBytes int num

from pointer address;

Undocumented.

File tom/ByteString

class tom.ByteString
A ByteString is aString and aByteArray , which can do all kinds of nice string-like things.

Requesting asubstring of a ByteString results in aByteSubstring to be returned. This will
mimic aByteString as much as possible, including hashing, equality, uniquing, printing, copying,
etc, but they do not share a common superclass betweenString andByteString .

In the future, theByteString instance actual functionality could be put into aByteFullstring ,
enabling theByteSubstring to actually become a subclass ofByteString ...

inherits

State supers:ByteArray , String , C, Constants

104

Chapter 8. Unittom

variables

static CharacterEncoding default_encoding;

The default character encoding forByteString instances.

Never refer this variable directly; always ask the string (even if it isself) for its encoding . A
normalByteString will then return thisdefault_encoding .

methods

OutputStream

help OutputStream s
done MutableKeyed done;

Output information on theByteString unit arguments.

void
load MutableArray arguments;

Set the default byte encoding. If it is not specified on the command line,iso-8859-1 will be used.

Before this method is invoked by the runtime library, thedefault_encoding will be a USASCI-

IEncoding .

void
switchToEncoding String name;

Switch to the encoding with thename, moaning if it fails (without changing the current encoding).

instance tom.ByteString
methods

char
at int index;

Return the Unicode character for the byte atindex .

(pointer, int)
byteStringContents;

Undocumented.

boolean
equal String other;

Undocumented.

int
hashRange (int, int) (start, len);

105

Chapter 8. Unittom

Undocumented.

boolean
equalByteString ByteString other;

Undocumented.

boolean
equalCharString CharString other;

Undocumented.

boolean
equalUniqueString UniqueString other;

Undocumented.

protected id (self)
init (pointer, int) (p, num);

Initialize the newly allocated instance with thenum bytes atp. The receiving instance will ‘own’ the
memory atp.

id (self)
initCopy (pointer, int) (p, num);

Initialize the newly allocated instance with a copy of thenumbytes atp.

MutableByteString

mutableSubstring (int, int) (start, len);

Return a new instance of the receiver’smutableCopyClass , initialized with a substring from the
receiver’s range(start, len) .

String

substring (int, int) (start, len);

Undocumented.

UniqueByteString

uniqueString;

Undocumented.

OutputStream

write OutputStream s;

Undocumented.

class (State)
mutableCopyClass;

106

Chapter 8. Unittom

Return theMutableByteString class.

CharacterEncoding

encoding;

Return the encoding of the receivingByteString . The default implementation returns thede-

fault_encoding .

String

stringByDecoding String encoding_name;

Undocumented.

String

stringByDemapping CharArray demap;

Undocumented.

boolean
isAlpha byte b;

ReturnTRUEthe character denoted by the byteb in the encoding of the receiving string is a letter.

boolean
isDigit byte b;

ReturnTRUEthe character denoted by the byteb in the encoding of the receiving string is a digit.

boolean
isLower byte b;

ReturnTRUEthe character denoted by the byteb in the encoding of the receiving string is a lowercase
letter.

boolean
isPunct byte b;

ReturnTRUEthe character denoted by the byteb in the encoding of the receiving string is a punctua-
tion character.

boolean
isSpace byte b;

ReturnTRUEthe character denoted by the byteb in the encoding of the receiving string is a space
character.

boolean
isUpper byte b;

107

Chapter 8. Unittom

ReturnTRUEthe character denoted by the byteb in the encoding of the receiving string is a uppercase
letter.

byte
toLower byte b;

Return the lower-case version of the byteb, according to the encoding of the receiving string. If the
character is not in upper-case, it is returned unharmed.

byte
toUpper byte b;

Return the upper-case equivalent of the byteb, according to the encoding of the receiving string. If
the character is not in lower-case, it is returned unharmed.

int
digitValue byte b;

Return the value equivalent of the byteb, for which this string should returnTRUEwhen askedis-

Digit .

int
alphaValue byte b;

Return the index of the letterb relative to the start of its letter range. Thus, ’a’ returns 0, ’f’ returns 5,
etc.

id
downcase;

This version ofdowncase overrides the implementation byString , since this one is faster due to
avoiding the unnecessary conversion to/from Unicode.

id
upcase;

Like downcase , this just is a faster implementation than the one provided byString .

File tom/ByteSubstring

class tom.ByteSubstring
A ByteSubstring is a substring of a constantByteString . It tries to maskerade as one (even
though it is certainly not anArray), possibly not perfect (yet).

inherits

State supers:String , C

108

Chapter 8. Unittom

methods

instance (id)
with (int, int) (start, len)

in ByteString string;

Undocumented.

instance tom.ByteSubstring
variables

ByteString string;

The string we’re begin part of.

int start;

The start of us in ourstring .

public int length;

The length of us, which is never< 0.

methods

id
init (int, int) (s, l)

in ByteString str;

Designated initializer.

class (State)
mutableCopyClass;

Return theMutableByteString class.

byte
at int index;

Retrieve thebyte at theindex .

ByteNumber

at int index;

Return theByteNumber at theindex .

Enumerator

enumerator;

Return a restricted enumerator on the underlying string.

109

Chapter 8. Unittom

id
initWithEnumerator Enumerator e;

Undocumented.

(pointer, int)
pointerToElements (int, int) (begin, len);

Another low level access method.

ByteSubstring

substring (int, int) (begin, len);

Return a new substring on ourstring ---we do not cascade substrings.

MutableByteString

mutableSubstring (int, int) (begin, len);

Undocumented.

(pointer, int)
byteStringContents;

Low level access method.

boolean
equal String other;

Undocumented.

int
hash;

Undocumented.

int
hashRange (int, int) (begin, len);

Undocumented.

boolean
equalByteString ByteString other;

Undocumented.

boolean
equalCharString CharString other;

Undocumented.

boolean

110

Chapter 8. Unittom

equalUniqueString UniqueString other;

Undocumented.

UniqueByteString

uniqueString;

Undocumented.

OutputStream

write OutputStream s;

Undocumented.

File tom/C

class tom.C
The C class provides low-level memory manipulation functionality. With it, a lot of collection and
string methods can be written in TOM instead of needing to be written in C.

inherits

Behaviour supers:All

methods

void
free pointer address;

Release the memory ataddress .

pointer
malloc int length;

Return a pointer to a newly allocated memory region oflength bytes.

pointer
calloc (int, int) (num, bytes);

Return a pointer to newly allocated and zeroed memory region ofnumelements of eachbytes size.

pointer
realloc (pointer, int) (address, length);

Return a pointer to the resized memory region ataddress which must holdlength bytes. The
address returned can differ from the previousaddress .

int

111

Chapter 8. Unittom

memcmp (pointer, pointer, int) (one, other, length);

Return 0 iff thelength bytes atone equal the bytes atother .

int
memchr (pointer, int, int) (p, c, length);

Search the firstlength bytes froms for characterc . Return the index intos at whichc first occurs.
If c is not present, return the value -1.

pointer
memcpy (pointer, pointer, int) (to, from, length);

Copy thelength bytes fromfrom to to . Returnto .

pointer
memmove (pointer, pointer, int) (to, from, length);

Copy thelength bytes fromfrom to to , safely. Returnto .

void
bzero (pointer, int) (p, num);

Set thenumbytes atp to 0.

instance tom.C
TheC instance can be and is totally empty.

File tom/CharArray

class tom.CharArray
Like the ByteArray , the CharArray is a particular kind ofArray , which is here for abstraction
purposes, but which is never actually used, since theCharString holds the same kind of state, but
provides much more functionality.

inherits

State supers:Array

instance tom.CharArray
methods

Any

at int index;

112

Chapter 8. Unittom

Undocumented.

byte
at int index;

Undocumented.

char
at int index;

Return the char value atindex . This is the elementary retrieval method for character arrays.

int
at int index;

Undocumented.

long
at int index;

Undocumented.

float
at int index;

Undocumented.

double
at int index;

Undocumented.

int
elementByteSize;

Undocumented.

protected id
initWithEnumerator Enumerator e;

Undocumented.

(pointer, int)
pointerToElements (int, int) (start, len);

Undocumented.

class (State)
mutableCopyClass;

Return theMutableCharArray class.

113

Chapter 8. Unittom

File tom/CharEncoding

class tom.CharacterEncoding
TheCharacterEncoding class defines the interface of the byte and character encodings for predi-
cates and conversions.

inherits

Behaviour supers:All

instance tom.CharacterEncoding
inherits

Behaviour supers:All

methods

deferred String

name;

Return the name of this encoding.

deferred char
decode byte b;

Return the decoded byteb, i.e. the Unicode character corresponding to the byteb in the receiving
encoding.

deferred byte
encode char c;

Return the byte encoding of the characterc . If the byte equivalent of the characterc does not exist
in the receiving encoding, anencoding-condition is signaled, and the byte encoded is thebyte-

Value of the object returned, or 127 ifnil is returned.

deferred boolean
isAlpha byte b;

ReturnTRUEthe character denoted by the byteb in the receiving encoding is a letter.

deferred boolean
isDigit byte b;

ReturnTRUEthe character denoted by the byteb in the receiving encoding is a digit.

deferred boolean
isLower byte b;

ReturnTRUEthe character denoted by the byteb in the receiving encoding is a lowercase letter.

114

Chapter 8. Unittom

deferred boolean
isPunct byte b;

ReturnTRUEthe character denoted by the byteb in the receiving encoding is a punctuation character.

deferred boolean
isSpace byte b;

ReturnTRUEthe character denoted by the byteb in the receiving encoding is a space character.

deferred boolean
isUpper byte b;

ReturnTRUEthe character denoted by the byteb in the receiving encoding is a uppercase letter.

deferred byte
toLower byte b;

Return the lowercase version of the byteb, according to the receiving encoding. If the character is not
in uppercase, it is returned unharmed.

deferred byte
toUpper byte b;

Return the uppercase version of the byteb, according to the receiving encoding. If the character is not
in lowercase, it is returned unharmed.

deferred int
digitValue byte b;

Return the numeric value of the digit denoted by the byteb in the receiving encoding.

deferred int
alphaValue byte b;

Return the index of the letterb relative to the start of its letter range. Thus, ’a’ returns 0, ’f’ returns 5,
etc.

class tom.CharEncoding
An instance of theCharEncoding class maintains information on on a particular mapping for en-
coding a subset of Unicode characters to 8-bit bytes. An example of such mappings isiso-8859-1 ,
which is the well known western european byte encoding, of whichUSASCII is a subset.

inherits

State supers:State , Constants , Conditions , CharacterEncoding

variables

115

Chapter 8. Unittom

static MutableDictionary encodings;

Currently known encodings.

methods

ByteArray

loadBytes int num
from String name

extension String ext;

Loadnumbytes from the file with thename and the extensionext (sans dot). The full path of the file
is obtained from themain Bundle .

instance (id)
named String name;

Return theCharEncoding known as thename. This always succeeds, as aCharEncoding reads the
resources it needs on demand.

instance tom.CharEncoding
variables

public String name;

The name of this encoding.

CharArray decoding;

The decoding map.

IntDictionary encoding;

The encoding map.

ByteArray to_lower;

The byte map for conversion to lower case within the encoding.

ByteArray to_upper;

The byte map for conversion to upper case within the encoding.

ByteArray to_title;

The byte map for conversion to title case within the encoding.

ByteArray is_digit;

The bitmap for testing whether a byte is a digit.

116

Chapter 8. Unittom

ByteArray is_letter;

The bitmap for testing whether a byte is a letter.

ByteArray is_lower;

The bitmap for testing whether a byte is lower case.

ByteArray is_punct;

The bitmap for testing whether a byte is a punctuation character.

ByteArray is_space;

Bitmap for space predicate.

ByteArray is_upper;

The bitmap for testing whether a byte is upper case.

methods

id
init String n;

Designated initializer.

char
decode byte b;

Return the decoded byteb, i.e. the Unicode character corresponding to the byteb in the receiving
encoding.

CharArray

decoding;

Return thedecoding map, reading it iff necessary.

byte
encode char c;

Return the byte encoding of the characterc . If the byte equivalent of the characterc does not exist
in the receiving encoding, anencoding-condition is signaled, and the byte encoded is thebyte-

Value of the object returned, or 127 ifnil is returned.

IntDictionary

encoding;

Return theencoding map, creating it from thedecoding map if necessary.

protected ByteArray

loadConversion String conversion;

117

Chapter 8. Unittom

Load and return the conversion table for theconversion of the receiving encoding.

protected ByteArray

loadPredicateSet String predicate;

Load and return the predicate set for thepredicate of the receiving encoding.

boolean
isAlpha byte b;

ReturnTRUEthe character denoted by the byteb in the receiving encoding is a letter.

boolean
isDigit byte b;

ReturnTRUEthe character denoted by the byteb in the receiving encoding is a digit.

boolean
isLower byte b;

ReturnTRUEthe character denoted by the byteb in the receiving encoding is a lowercase letter.

boolean
isPunct byte b;

ReturnTRUEthe character denoted by the byteb in the receiving encoding is a punctuation character.

boolean
isSpace byte b;

ReturnTRUEthe character denoted by the byteb in the receiving encoding is a space character.

boolean
isUpper byte b;

ReturnTRUEthe character denoted by the byteb in the receiving encoding is a uppercase letter.

byte
toLower byte b;

Return the lowercase version of the byteb, according to the receiving encoding. If the character is not
in uppercase, it is returned unharmed.

byte
toUpper byte b;

Return the uppercase version of the byteb, according to the receiving encoding. If the character is not
in lowercase, it is returned unharmed.

int
digitValue byte b;

118

Chapter 8. Unittom

Return the numeric value of the digit denoted by the byteb in the receiving encoding.

int
alphaValue byte b;

Return the index of the letterb relative to the start of its letter range. Thus, ’a’ returns 0, ’f’ returns 5,
etc.

class tom.USASCIIEncoding
A replacement for a realCharEncoding used during program initialization.

inherits

State supers:State , CharacterEncoding

variables

static USASCIIEncoding shared;

The one and onlyUSASCIIEncoding object.

methods

instance (id)
shared;

Undocumented.

instance tom.USASCIIEncoding
methods

String

name;

We’re really a dummy, so we do not have a name. In fact, that is how we’re recognized.

char
decode byte b;

This is acceptable for iso-8859-1.

byte
encode char c;

This is acceptable for iso-8859-1.

boolean
isAlpha byte b;

119

Chapter 8. Unittom

Undocumented.

boolean
isDigit byte b;

Undocumented.

boolean
isLower byte b;

Undocumented.

boolean
isPunct byte b;

Undocumented.

boolean
isSpace byte b;

Undocumented.

boolean
isUpper byte b;

Undocumented.

byte
toLower byte b;

Undocumented.

byte
toUpper byte b;

Undocumented.

int
digitValue byte b;

Undocumented.

int
alphaValue byte b;

Undocumented.

120

Chapter 8. Unittom

File tom/CharString

class tom.CharString
inherits

State supers:CharArray

instance tom.CharString
methods

boolean
equal String other;

Undocumented.

boolean
equalByteString ByteString other;

Undocumented.

boolean
equalCharString id other;

Undocumented.

boolean
equalUniqueString UniqueString other;

Undocumented.

protected id
init (pointer, int) (p, num);

Initialize the newly allocated instance with thenumcharacters atp. The receiving instance will ‘own’
the memory atp.

id (self)
initCopy (pointer, int) (p, num);

Initialize the newly allocated instance with a copy of thenumchars atp.

MutableCharString

mutableSubstring (int, int) (start, len);

Undocumented.

CharString

substring (int, int) (start, len);

121

Chapter 8. Unittom

Undocumented.

UniqueCharString

uniqueString;

Undocumented.

class (State)
classForCoder Encoder coder;

Undocumented.

class (State)
mutableCopyClass;

Return theMutableCharString class.

File tom/Condition

class tom.Condition
inherits

State supers:State

methods

instance (id)
for All object

class ConditionClass condition_class
message String msg;

Return a newCondition for the indicated circumstances.

instance tom.Condition
variables

public ConditionClass condition_class;

The condition class of the condition indicated by thisCondition .

public Any object;

The object by/for which this condition was raised.

public String message;

The message explaing what actually happened.

122

Chapter 8. Unittom

public boolean raised;

Iff TRUE, this condition was raised, otherwise it was signaled.

methods

protected id
initFor All o

class ConditionClass cc
message String msg;

Undocumented.

void
raise;

Raise this condition; guaranteed never to return.

Any

signal;

Signal this condition. If a handler performs a non-local break, this method does not return. If no
handler is installed,nil is returned. If a handler returns something different from this condition,
signaling is terminated and that value is returned.

OutputStream (s)
writeFields OutputStream s;

Undocumented.

class tom.SelectorCondition
inherits

State supers:Condition

methods

instance (id)
for All object

class ConditionClass condition_class
message String msg

selector selector sel;

Return a newSelectorCondition for the indicated circumstances.

instance tom.SelectorCondition
variables

123

Chapter 8. Unittom

selector sel;

The selector which was sent to theobject .

methods

protected id
initFor All o

class ConditionClass cc
message String msg

selector selector s;

Undocumented.

selector
selector;

Return the selector,sel .

OutputStream (s)
writeFields OutputStream s;

Undocumented.

File tom/ConditionClass

class tom.ConditionClass
Instances of theConditionClass define the hierarchy of conditions as carried byCondition in-
stances. Conditions classes could be real tom classes, but the features provided by said mechanism
are too baroque for this purpose---only the inheritance is needed.

The tom condition class hierarchy does not employ multiple inheritance.

TOM conditions are evidently modelled after CL.

inherits

State supers:State

methods

instance (id)
with instance (id) super_condition
name ByteString name;

Undocumented.

124

Chapter 8. Unittom

instance tom.ConditionClass
variables

id super_condition;

Our super condition class. The super condition class of the topcondition is nil .

public ByteString name;

Our descriptive name.

methods

protected id
init id sc
name ByteString nm;

Undocumented.

boolean
isConditionSuper id other;

Return YES iffother is a super condition class of the receiving condition class.

File tom/Conditions

class tom.Conditions
TheConditions class is an instance-less non-static-state-less class providing predefined conditions.
Not-predefined, i.e. user defined, conditions should be made available to the world through an exten-
sion ofConditions .

variables

static All unhandled_condition_handler;

The object informed of unhandled condition raises. Iffnil , the program aborts when a condition
being raised is not handled. This feature is not yet implemented within the runtime.

static selector unhandled_condition_selector;

The selector of the message to be sent to theunhandled_raise_handler . This method accepts
a single argument, which will be aCondition . This feature is not yet implemented within the
runtime.

static ConditionClass condition;

Various (and numerous) condition classes, indented according to condition inheritance.

125

Chapter 8. Unittom

static ConditionClass warning;

static ConditionClass unimplemented;

static ConditionClass encoding-condition;

static ConditionClass serious-condition;

static ConditionClass runtime-condition;

static ConditionClass runtime-fatal;

static ConditionClass nil-receiver;

static ConditionClass unrecognized-selector;

static ConditionClass uncaught-throw;

static ConditionClass program-condition;

static ConditionClass unknown-class-condition;

static ConditionClass coding-condition;

static ConditionClass type-condition;

static ConditionClass lock-condition;

126

Chapter 8. Unittom

static ConditionClass condition-condition;

static ConditionClass error;

static ConditionClass file-error;

static ConditionClass stream-error;

static ConditionClass stream-eos;

static ConditionClass signal-condition;

static ConditionClass signal-hup;

static ConditionClass signal-int;

static ConditionClass signal-bus;

static ConditionClass signal-segv;

static ConditionClass float-condition;

static ConditionClass overflow-condition;

static ConditionClass underflow-condition;

instance tom.Conditions

127

Chapter 8. Unittom

File tom/Cons

class tom.Cons
inherits

State supers:State

methods

instance (id)
with (All , All) (a, d);

Return a newly allocated instance with thea andd as thecar andcdr , respectively.

instance (id)
cons All a

: All d = nil;

Return a newly allocated instance with thea andd as thecar andcdr , respectively. The cdrd defaults
to nil .

instance tom.Cons
variables

public Any car;

The element contained in thisCons cell, and the remainder of the list.

public Any cdr;

methods

protected id (self)
init (All , All) (a, d);

Designated initializer.

boolean
consp;

ReturnYES.

(Any, Any)
decons;

Return the(car, cdr) in a tuple.

128

Chapter 8. Unittom

void
set_car All c;

Set thecar to the objectc .

void
set_cdr All c;

Set thecdr to the objectc .

void
encodeUsingCoder Encoder coder;

Encode the receiving object to thecoder .

boolean
equal id other;

ReturnTRUEif the receiving list is equal to theother list. Elements are compared withequal .

int (value)
hash;

Use thecar andcdr to compute a hash value for thisCons cell.

void
initWithCoder Decoder coder;

Decode the receiving object from thecoder .

id
member All object;

Return the Cons cell whose car isequal to theobject .

id
memq All object;

Like member, but the element is identified on reference equality.

OutputStream

write OutputStream s;

Output the list, of which the receivingCons cell is the start, to the streams .

OutputStream

writeListElement OutputStream s;

Continue outputing the list, of which the receivingCons cell is an element and not the head, to the
streams .

129

Chapter 8. Unittom

File tom/Constants

class tom.Constants
The constants used throughout the tom unit.

variables

Trie constants

const TRIE_PLAIN = 0;

The plain option indicates absence of other options.

const TRIE_REVERSED = 1;

Reverse the string before insertion or lookup.

const TRIE_FOLD_CASE = 2;

Ignore the case during a lookup; use lower-case characters during an insert.

const TRIE_LOOKUP_PREFIX = 4;

Do not require a full match in a lookup; the longest prefix will match with this option specified.

Open flags

const FILE_EXIST_NOTHING = 1;

If the file exists, do nothing (and return nil).

const FILE_EXIST_RAISE = 2;

If the file exists, raise a condition.

const FILE_EXIST_TRUNCATE = 4;

If the file exists andoutput_p , truncate it to zero length.

const FILE_EXIST_SUPERSEDE = 8;

If the file exists andoutput_p , a new version of the file will be created (by unlinking the old
file first).

const FILE_NOT_EXIST_NOTHING = 16;

If the file does not exist, do nothing (and return nil). If onlyinput_p , nil will also be returned
if it can’t be opened anyway.

const FILE_NOT_EXIST_RAISE = 32;

If the file does not exist, raise a condition.

130

Chapter 8. Unittom

const FILE_NOT_EXIST_CREATE = 64;

If the file does not exist andoutput_p , create it.

const FILE_APPEND = 128;

Every write will append to the end of the file.

const FILE_MASK = 255;

A mask for the above flags.

const FILE_TYPE_NONEXISTENT = 0;

Retrieving information about a file.

const FILE_TYPE_OTHER = 1;

const FILE_TYPE_SOCKET = 2;

const FILE_TYPE_LINK = 3;

const FILE_TYPE_REGULAR = 4;

const FILE_TYPE_BLOCK = 5;

const FILE_TYPE_DIRECTORY = 6;

const FILE_TYPE_CHARACTER = 7;

const FILE_TYPE_FIFO = 8;

Positioning aSeekableStream

const STREAM_SEEK_SET = 0;

Position absolute.

131

Chapter 8. Unittom

const STREAM_SEEK_CUR = 1;

Position relative to the current position.

const STREAM_SEEK_END = 2;

Position relative to the end of the file.

TypeDescription types.

const TYPEDESC_VOID = 0;

This value indicates thevoid type. The other values follow the same naming convention.

const TYPEDESC_BOOLEAN = 1;

const TYPEDESC_BYTE = 2;

const TYPEDESC_CHAR = 3;

const TYPEDESC_INT = 4;

const TYPEDESC_LONG = 5;

const TYPEDESC_FLOAT = 6;

const TYPEDESC_DOUBLE = 7;

const TYPEDESC_POINTER = 8;

const TYPEDESC_SELECTOR = 9;

const TYPEDESC_REFERENCE = 10;

132

Chapter 8. Unittom

const TYPEDESC_DYNAMIC = 11;

const TYPEDESC_NUM = 12;

This is not a real type; it merely denotes the number ofTYPEDESC_values.

instance tom.Constants

File tom/DCons

class tom.DCons
inherits

State supers:Cons

methods

instance (id)
with (All , All , All) (a, d, b);

Undocumented.

instance tom.DCons
variables

public Any cbr;

The back pointer.

methods

void
set_cbr All c;

Undocumented.

boolean
dconsp;

Undocumented.

protected id (self)
init (All , All , All) (a, d, b);

Undocumented.

133

Chapter 8. Unittom

(All , All , All)
dedcons;

Undocumented.

void
unlink;

Undocumented.

class tom.ListEnumerator
inherits

State supers:State , Enumerator

methods

instance (id)
with DList l;

Undocumented.

instance tom.ListEnumerator
variables

Cons cell;

The current cell.

methods

id (self)
init Cons c;

Designated initializer.

(boolean, All)
next;

Undocumented.

class tom.DList
inherits

State supers:MutableOrdered

methods

instance (id)

134

Chapter 8. Unittom

new;

Undocumented.

instance tom.DList
variables

public DCons head;

public DCons tail;

methods

Enumerator

enumerator;

Undocumented.

int
length;

Undocumented.

void
add All object;

Undocumented.

void
empty;

Undocumented.

DCons

cellAtIndex int index;

Undocumented.

void
set All object

at int index;

Undocumented.

void
swap All object

135

Chapter 8. Unittom

at (int, int) (i, j);

Undocumented.

void
reverse (int, int) (start, len);

Undocumented.

void
reverse;

Fast and easy method for the simplest case.

void
pushHeadCons DCons cell;

Push the cell to the front of the list.

void
pushTailCons DCons cell;

Push the cell to the back of the list.

void
pushHead All object;

Push the element to the front of the list.

void
pushTail All object;

Push the element to the back of the list.

void
removeCons DCons cell;

Remove a cell from the list. The cell should be a member.

All

popHead
pre

head != nil;

Pop the element from the head of the list.

All

popTail
pre

head != nil;

136

Chapter 8. Unittom

Pop the element from the tail of the list.

All

first
pre

head != nil;

First element of the list.

All

last
pre

head != nil;

Last element of the list.

boolean
dlistp;

Return TRUE.

File tom/Date

class tom.Date
The Date class implements absolute times using doubles to represent the number of seconds passed
since a certain reference date. Internally the time at which the Date class was initialized is used as
reference. As absolute reference the first instant of January 1, 2001 is used. All gregorian calculation
functions use an absolute date which is the number of days since the Gregorian date December 31, 1
BC.

inherits

State supers:State

variables

const EPSILON = 1e-06;

For two dates to be considered equal they should be no further apart thanEPSILON.

const OFFSET_DISTANT_FUTURE = 1e+100;

const OFFSET_DISTANT_PAST = -OFFSET_DISTANT_FUTURE;

137

Chapter 8. Unittom

const SECONDS_PER_DAY = 86400.0;

const ABSOLUTE_REFDATE = 730486;

The number of days from the imaginary Gregorian date Sunday, 31 december 1 BC to our refer-
ence date (January 1 2001).

static public double relative_offset;

Some offset from the reference date relative to which all Date instances maintain their notion
of time. This is set inload , ensuring a high accuracy of dates near the moment in time during
which this program is running.

static public Date distant_future;

A date in the very far future and a date in the very far past.

static public Date distant_past;

methods

double (now)
relativeTimeIntervalSinceNow

post
now > 0.0;

Return the number of seconds afterrelative_offset it is now.

double
timeIntervalSinceReferenceDate;

Return the number of seconds after the absolute reference date it is now. This number is negative for
dates before the first instant of January 1, 2001.

(int, double)
absoluteAndSecondsOfTimeInterval double ti;

Return the absolute date and the seconds passed in that day for a time interval since the reference
date.

int
absoluteFromGregorian (int, int, int) (year, month, day);

The number of days elapsed between the Gregorian date 12/31/1 BC and(year, month, day) .
The Gregorian date Sunday, December 31, 1 BC is imaginary.

int
absoluteFromIso (int, int, int) (year, week, day);

138

Chapter 8. Unittom

The number of days elapsed between the Gregorian date 1 BC December 31 and DATE. The ‘ISO
year’ corresponds approximately to the Gregorian year, but weeks start on Monday and end on Sun-
day. The first week of the ISO year is the first such week in which at least 4 days are in a year. The
ISO commercial DATE has the form(year, week, day) in which week is in the range 1..52 and
day is in the range 0..6 (1 == Monday, 2 == Tuesday, ..., 0 == Sunday). The Gregorian date Sunday,
December 31, 1 BC is imaginary.

int
dayNameOnOrBefore (int, int) (day_name, absolute);

Returns the absolute date of theday_name on or beforeabsolute . day_name==0 means Sunday,
day_name==1 means Monday, and so on.

Note: Applying this function toabsolute +6 gives us theday_name on or after an absolute day
d. Similarly, applying it toabsolute +3 gives theday_name nearest toabsolute , applying it to
absolute -1 gives theday_name previous toabsolute , and applying it toabsolute +7 gives the
day_name following absolute .

int
dayNumber (int, int, int) (year, month, day);

Return the day number within the year of the date(year, month, day) . For example, dayNumber
(1, 1, 1987) returns the value 1, while dayNumber (12, 31, 1980) returns 366.

int
dayOfWeekOfAbsolute int absolute;

Return the Gregorian day of the week forabsolute where 0==Sunday, 1==Monday, ..., 6==Saturday.

(int, int, int)
gregorianFromAbsolute int date;

Compute the list (month, day, year) corresponding to the absolute DATE. The absolute date is the
number of days elapsed since the (imaginary) Gregorian date Sunday, December 31, 1 BC.

boolean
isLeapYear int year;

ReturnTRUEiff year is a Gregorian leap year.

(int, int, int)
isoFromAbsolute int absolute;

Compute the ‘ISO commercial date’ corresponding to theabsolute . The ISO year corresponds
approximately to the Gregorian year, but weeks start on Monday and end on Sunday. The first week
of the ISO year is the first such week in which at least 4 days are in a year. The ISO commercial
date has the form (year week day) in which week is in the range 1..52 and day is in the range 0..6 (1
= Monday, 2 = Tuesday, ..., 0 = Sunday). The absolute date is the number of days elapsed since the
(imaginary) Gregorian date Sunday, December 31, 1 BC.

139

Chapter 8. Unittom

int
lastDayOfMonth int month

year int year;

Return the last day of the monthmonth of the yearyear .

void
load MutableArray arguments;

Perform class initialization.

Date

now;

Return a date instance representing this moment.

protected double
relativeTimeIntervalOfAbsoluteAndSeconds (int, double) (absolute, seconds);

Return the absolute date and the seconds passed in that day for a time interval since the reference
date.

double
timeIntervalOfAbsoluteAndSeconds (int, double) (absolute, seconds);

Return the absolute date and the seconds passed in that day for a time interval since the reference
date.

instance tom.Date
variables

double relative_ti;

methods

int
compare id other;

Returns -1 if the receiver is earlier thanother 0 if the difference is smaller thatEPSILONand 1 if the
receiver is afterother .

id
dateWithOffset double ti;

Return a new instance initialized atti seconds after the receiver.

Date

140

Chapter 8. Unittom

earlierDate Date other;

Returnother if it is earlier than the receiver, return the receiver otherwise.

boolean
equals id d;

ReturnTRUEiff the receiver is withinEPSILONseconds ofd.

protected id
init double d;

Designated initializer.

id
init;

Initialize with the current time.

id
initWithTimeIntervalSinceNow double ti;

Initialize with ti seconds after the current time.

id
initWithTimeIntervalSinceReferenceDate double ti;

Initialize with ti seconds after the absolute reference date January 1, 2001.

Date

laterDate Date other;

Returnother iff it is later than the receiver, return the receiver otherwise.

protected double
relativeTimeInterval;

Return the number of seconds afterrelative_offset

double
timeIntervalSinceDate Date d;

Return the number of seconds passed sinced. This number is negative if the receiver is earlier thand.

double
timeIntervalSinceNow;

Return the number of seconds passed since now. This number is negative for dates before now.

double
timeIntervalSinceReferenceDate;

141

Chapter 8. Unittom

Return the number of seconds passed since the absolute reference date. This number is negative for
all dates before the first instant of January 1 2001.

OutputStream

write OutputStream s;

Print this date in a human readable format, relative to GMT.

void
encodeUsingCoder Encoder coder;

Undocumented.

void
initWithCoder Decoder coder;

Undocumented.

File tom/Descriptor

class tom.Descriptor
A Descriptor is the abstraction of the UNIX file descriptor.

inherits

State supers:State , Conditions

instance tom.Descriptor
variables

public int descriptor;

The file descriptor. This will be -1 if we’re not actively open.

methods

void
close;

Close this descriptor. If it succeeds, every read, write, or other operation afterwards will certainly fail.
If it fails, this may not be the case.

void
dealloc;

Close thedescriptor if it is not -1 .

142

Chapter 8. Unittom

id
init;

Invoke [self init -1] to avoid ever closing file descriptor 0 by accident.

protected id
init int fd;

Designated initializer: Initialize withfd as thedescriptor .

int
type-of-file;

Return one of theFILE_TYPE_* constants for the receiving File. Signal afile_error and return
FILE_TYPE_NONEXISTENTif not open.

File tom/Dictionary

class tom.DictionaryContainer
A DictionaryContainer is a class which can be inherited byDictionary -like objects, to allow
them to be a container, with respect to their value objects. It is a seperate class, for inheritance by the
PointerDictionary class.

inherits

State supers:Container

instance tom.DictionaryContainer

class tom.ObjectDictionary
An ObjectDictionary is aDictionary mapping objects to objects. It is the superclass ofDic-

tionary and EqDictionary . The latter hash the key objects on their address, and uses pointer
equivalence.

inherits

State supers:HashTable , Mapped, DictionaryContainer

instance tom.ObjectDictionary
methods

void
doKeys Block block;

143

Chapter 8. Unittom

Evaluate theblock for each key.

Enumerator

enumerator;

Return avalueEnumerator .

Any

member All object;

InvokeHashTable ’s implementation.

Any

memq All object;

InvokeHashTable ’s implementation.

Enumerator

keyEnumerator;

Return an enumerator on the keys of this dictionary.

DictionaryEnumerator

valueEnumerator;

Return an enumerator on the values of this dictionary.

OutputStream

write OutputStream s;

Undocumented.

class tom.Dictionary
inherits

State supers:ObjectDictionary

instance tom.Dictionary

class tom.MutableDictionary
inherits

State supers:Dictionary , MutableHashTable , MutableMapped

instance tom.MutableDictionary
methods

144

Chapter 8. Unittom

void
remove All key;

Remove the mapping for thekey .

void
add All object;

Undocumented.

void
set All value

at All key
pre

value != nil && key != nil;

Undocumented.

class tom.DictionaryEnumerator
inherits

State supers:HashTableEnumerator , MapEnumerator

instance tom.DictionaryEnumerator
variables

redeclare BucketDictElement elt;

methods

(boolean, Any, Any) (valid, k, v)
next;

Undocumented.

class tom.DictionaryValueEnumerator
inherits

State supers:DictionaryEnumerator

instance tom.DictionaryValueEnumerator
methods

(boolean, Any) (valid, object)

145

Chapter 8. Unittom

next;

Undocumented.

File tom/DoubleArray

class tom.DoubleArray
inherits

State supers:Array

methods

instance (id)
with dynamic elements;

Take thedouble arguments and craft a new array.

instance tom.DoubleArray
methods

protected id
initWithEnumerator Enumerator e;

Undocumented.

Any

at int index;

Undocumented.

byte
at int index;

Undocumented.

char
at int index;

Undocumented.

double
at int index;

Undocumented.

146

Chapter 8. Unittom

long
at int index;

Undocumented.

int
at int index;

Undocumented.

float
at int index;

Undocumented.

int
elementByteSize;

Undocumented.

(pointer, int)
pointerToElements (int, int) (start, len);

Undocumented.

class (State)
mutableCopyClass;

Return theMutableDoubleArray class.

File tom/EqDictionary

class tom.EqDictionary
inherits

State supers:ObjectDictionary , EqHashTable

instance tom.EqDictionary
methods

id
initWithEnumerator Enumerator e;

Undocumented.

147

Chapter 8. Unittom

class tom.MutableEqDictionary
inherits

State supers:EqDictionary , MutableEqHashTable , MutableMapped

instance tom.MutableEqDictionary
methods

void
remove All key;

Remove the mapping for thekey .

void
set All value

at All key
pre

value != nil && key != nil;

Undocumented.

class tom.WeakKeyMutableEqDictionary
The WeakKeyMutableEqDictionary is identical to a MutableEqDictionary, except that when it is a
container, the references to the keys are weak, whereas in the case of an ordinary MutableEqDic-
tionary the value references are weak.

inherits

State supers:MutableEqDictionary

instance tom.WeakKeyMutableEqDictionary
methods

void
gc_container_mark_elements;

Almost identical toMutableHashTable ’s implementation, but the bucket elements are asked to
gc_mark_keys instead ofgc_mark_values .

File tom/EqHashTable

class tom.EqHashTable
inherits

148

Chapter 8. Unittom

State supers:HashTable

instance tom.EqHashTable
methods

Any

at All key;

Return thekey if present, ornil otherwise.

void
resizing_add BucketElement elt;

Undocumented.

class tom.MutableEqHashTable
inherits

State supers:EqHashTable , MutableHashTable

instance tom.MutableEqHashTable
methods

void
add BucketElement elt;

Undocumented.

File tom/EqSet

class tom.EqSet
inherits

State supers:Set , EqHashTable

instance tom.EqSet

class tom.MutableEqSet
inherits

State supers:EqSet , MutableEqHashTable , MutableSet , Container

149

Chapter 8. Unittom

Retrieve a (any) object from the set. This removes an element from the set and returns it.

instance tom.MutableEqSet
methods

void
add All object;

Add theobject to the receiving set.

void
remove All object;

Removeelt from the receiving set, if present.

void
gc_mark_containers

pre
[self isContainer];

This method is invoked by the garbage collector to have the set containing all containers make those
containers mark their elements. This method relies on the container containing the containers be itself
a container.

File tom/Extension

class tom.Extension
TheExtension class represents the runtime structures for class extensions. All classes have at least
one extension, the main extension, which defines the behaviors and the state for that class. All other
extensions are defined by the programmer as extensions to the class.

inherits

State supers:State , Conditions

variables

static MutableArray extensions;

All extensions, here to be protected against gc.

methods

instance (id)
new pointer p;

150

Chapter 8. Unittom

Designated allocator. Do not usealloc or plainnew.

instance tom.Extension
variables

pointer rti;

The runtime structure describing this extension.

Indexed method_selectors;

The selectors for this extension’s methods.

Indexed var_names;

The names of this extension’s variables.

methods

void
dealloc;

An Extension should never be deallocated. This method raises, which is a panic during garbage
collection...

boolean
implements selector sel;

ReturnYES if this extension provides an implementation for the selectorsel .

protected id (self)
init pointer r;

Designated initializer.

class (State)
meta;

Return the class object to which this extension belongs.

String

name;

Return the name of this extension. This will benil for the main extension of a class.

Indexed

methods;

Return the selectors for the methods in this extension.

151

Chapter 8. Unittom

boolean
hasState;

Return whether or not this extension defines variable additions.

Indexed

variables;

Return the names of the variables in this extension.

int
typeOfVariableNamed String name

in All object;

Return the type of the variable namedname. The return value will correspond with one of theTYPE-

DESC_* constants defined on theConstants class.

Any

valueOfVariableNamed String name
in All object;

Undocumented.

void
setValue dynamic value

ofVariableNamed ByteString name
in All object;

Undocumented.

OutputStream

writeFields OutputStream s;

Undocumented.

dynamic
perform selector sel

on All object
with dynamic arguments;

The equivalent ofperform with where the method invoked is defined by this extension instead of
the receiving object. Obviously, theobject should actually have this extension as one of its exten-
sions, i.e.[object isKindOf [self meta]] should be a precondition (and a postcondition too,
but we’re not interested after the fact).

dynamic
perform selector sel

on All object
: Array arguments = nil;

152

Chapter 8. Unittom

Undocumented.

File tom/File

class tom.File
The File class offers an abstraction from files in the filesystem.

inherits

State supers:ByteStream , SeekableStream , Constants , Conditions

variables

const OPEN_INPUT = 256;

const OPEN_OUTPUT = 512;

methods

String

basename String filename
without-extension: String ext = nil;

Return thefilename removing any directory component, and removing the extensionext if it
matches and is notnil .

String

current_directory;

Return the current directory, as a directory name (tailing slash).

void
set_current_directory String directory;

Set the currentdirectory . This raises afile-error when problems arise.

String

directory-of-file String name;

Return the directory-name of the directory containing the file namedfilename .

String

expand-filename String filename
relative-to: String directory = nil;

153

Chapter 8. Unittom

Expand thefilename relative to thedirectory . If directory is nil , expansion is relative to the
current working directory.

String

express-filename String filename
relative-to String directory;

Express thefilename in terms relative to thedirectory .

String

filename-as-directory String filename;

Return thefilename as the name of a directory.

MutableArray

filenames-in-directory String dir_name;

Return the filenames in the directory nameddir_name .

String

locate-file String file
along-path Indexed path;

Return the filename of thefile somewhere along thepath . Returnnil if it could not be found.

boolean
file-exists String name;

ReturnYES iff the file with thename exists.

int
type-of-file String name
follow-link: boolean follow_link = YES;

Return one of theFILE_TYPE_* constants.

instance (id)
open String name

input: boolean input_p = FALSE
output: boolean output_p = FALSE

flags: int action = 0;

Return a newFile .

instance (id)
open String name

alongPath Indexed path
subdir: String subdir1 = nil

subsubdir: String subdir2 = nil;

154

Chapter 8. Unittom

Search for the file along thepath .

For the subdirectoriessubdir1 andsubdir2 , when not nil, the following attempts are made for a
dir in thepath : dir , dir/subdir2 , dir/subdir1 , anddir/subdir1/subdir2 .

void
remove String name;

Remove the file or directory with thename.

instance tom.File
variables

public String name;

The name of the file.

int flags;

If it is to be reopenend, these are the flags indicating how to do so.

methods

protected id
init String n

flags int f;

Designated initializer.

String

directoryName;

Return the name of the directory containing our file.

id
reopen;

Reopen the file according to theflags .

int
type-of-file;

Return one of theFILE_TYPE_* constants for the receiving File. If the file is not open, the file is
tested as if the file were open, i.e. following links.

OutputStream

writeFields OutputStream s;

Undocumented.

155

Chapter 8. Unittom

long
length;

Return the length of the file.

long
position;

Return the current file position.

void
seek long offset

relative: int whence = STREAM_SEEK_SET;

Position the file ‘pointer’.

File tom/FloatArray

class tom.FloatArray
inherits

State supers:Array

methods

instance (id)
with dynamic elements;

Take thefloat arguments and craft a new array.

instance tom.FloatArray
methods

protected id
initWithEnumerator Enumerator e;

Undocumented.

Any

at int index;

Undocumented.

byte
at int index;

156

Chapter 8. Unittom

Undocumented.

char
at int index;

Undocumented.

float
at int index;

Undocumented.

long
at int index;

Undocumented.

int
at int index;

Undocumented.

double
at int index;

Undocumented.

int
elementByteSize;

Undocumented.

(pointer, int)
pointerToElements (int, int) (start, len);

Undocumented.

boolean
elementsLowerThan FloatArray fa;

ReturnsTRUEif every element inself is lower than the corresponding element infa .

FloatArray

minor FloatArray fa;

Undocumented.

class (State)
mutableCopyClass;

Return theMutableFloatArray class.

157

Chapter 8. Unittom

File tom/HashTable

class tom.HashTable
inherits

State supers:State , Keyed

variables

const GOLDEN_BITS = -1640531527;

Thirty-two bits by which to multiply a hashvalue to make all bits, more or less, significant.

This (unsigned) value is (1 << 32) * frac (0.5 + 0.5 * sqrt (5)). The value of which the fractional
part is taken is the golden ratio. (0x9e3779b9).

instance tom.HashTable
variables

public int length;

The number of stored objects.

int size_shift;

The 2log of the number of buckets.

MutableObjectArray buckets;

The buckets.

methods

id (self)
init;

Designated initializer.

void
empty;

Remove all elements from the table.

void
do Block block;

Evaluate theblock for each object element in thisHashTable , by passing this method to theBuck-

etElement s.

158

Chapter 8. Unittom

Any

at All key;

Return thekey if present, ornil otherwise.

Any

member All object;

A different name forat .

Any

member All key
equal selector cmp;

Like member, but the elements are compared using the selectorcmp.

Any

memq All key;

Like member, but the element is identified on reference equality.

void
encodeUsingCoder Encoder coder;

Undocumented.

void
initWithCoder Decoder coder;

Undocumented.

protected void
adjust_length int inc

pre
inc != 0;

Adjust the length of the hashtable, resizing if necessary.

protected void
resize int new_shift;

Undocumented.

void
resizing_add BucketElement elt;

Undocumented.

159

Chapter 8. Unittom

class tom.HashTableContainer
The HashTableContainer class is just a HashTable which knows how to mark its elements as a con-
tainer. It is intended to be inherited by various class employing the HashTable class as a superclass
for implementation reuse.

inherits

State supers:HashTable , Container

instance tom.HashTableContainer
methods

void
gc_container_mark_elements;

Undocumented.

class tom.MutableHashTable
inherits

State supers:HashTableContainer , MutableKeyed

instance tom.MutableHashTable
methods

void
add BucketElement elt;

Add elt to the receiving hashtable.

void
remove BucketElement elt;

Removeelt from the receiving hashtable, if present.

class tom.HashTableEnumerator
inherits

State supers:State , Enumerator

methods

instance (id)
with Indexed b;

Undocumented.

160

Chapter 8. Unittom

instance tom.HashTableEnumerator
variables

Indexed buckets;

The array the dictionary uses to store the buckets.

int next;

The next bucket index we shall use.

BucketElement elt;

The bucket element we’re looking at.

methods

protected id
init Indexed b;

Undocumented.

protected boolean
next;

Updateelt to point to the next bucket element.

File tom/Heap

class tom.Heap
inherits

State supers:State , MutableCollection

instance tom.Heap
variables

MutableArray elements;

The array used to store the elements.

public int length;

The number of elements. This is equal to[elements length] .

161

Chapter 8. Unittom

public mutable selector compare_selector;

The selector used to have two elements compare themselves. If this isn’t set,i_compare_r will
be used.

boolean max_heap;

If this is TRUE, this is a heap of which the root node is the largest. Otherwise, the root is the
smallest node.

methods

id
init;

Invoke [self init TRUE] .

id (self)
init boolean root_is_max;

Designated initializer.

boolean
dump_simple_p;

ReturnNO.

Any

extract_min
pre

!max_heap;

Extract the root of the heap, which must be a heap storing the minimum value at its root.

int
index_of_element All element;

Return the index of theelement in this heap. Used by elements that do not remember their own
index.

Any (object)
min

pre
!max_heap;

Return the minimum value of the heap, which must be a heap storing the minimum value at its root.
Returnnil if the heap is empty.

Any

extract_max
pre

162

Chapter 8. Unittom

max_heap;

Extract the root of the heap, which must be a heap which stores the maximum value at its root.

Any (object)
max

pre
max_heap;

Return the maximum value of the heap, which must be a heap storing the maximum value at its root.
Returnnil if the heap is empty.

Any (object)
extract_root

pre
length > 0

post
length == old length - 1;

Extract and return the rootobject of the heap.

Any (object)
root

pre
length > 0;

Return the rootobject of the heap, without extracting it.

void
remove Comparable elt;

Remove theelt from the receiving heap. Theelt should be an element of the heap.

void
add Comparable object

post
length == 1 + old length;

Add theobject to this Heap.

void
addElementsFromEnumerator Enumerator e;

Undocumented.

void
empty;

Remove all elements.

163

Chapter 8. Unittom

Enumerator

enumerator;

Return an enumerator on the elements of this heap. Note that the order of the elements returned is
undefined.

protected void
build_heap;

Build a heap from the elements already inelements .

int
compare (Comparable , Comparable) (one, other);

Let one compare itself with theother , either using thecompare_selector , or, if not set, theint

compare id method.

protected void
heapify int index;

Heapify from the node at indexi (which is off by 1 compared to the index of the element in the
elements array).

File tom/HeapElement

class tom.HeapElement
inherits

State supers:State , Comparable

instance tom.HeapElement
variables

int heap_index;

The index of the element within theHeap it is stored. This index is 1 more than the index in the
elements Array of theHeap. If this element is not part of a heap, this index is 0.

methods

void
set_index int index

in_heap Heap heap;

Set theheap_index to index , without checking theheap .

164

Chapter 8. Unittom

int
index_in_heap Heap heap;

Return theheap_index , assuming a correctheap .

File tom/IntArray

class tom.IntArray
inherits

State supers:Array

methods

instance (id)
with dynamic elements;

Undocumented.

instance tom.IntArray
methods

protected id
initWithEnumerator Enumerator e;

Undocumented.

Any

at int index;

Undocumented.

byte
at int index;

Undocumented.

char
at int index;

Undocumented.

int
at int index;

Undocumented.

165

Chapter 8. Unittom

long
at int index;

Undocumented.

float
at int index;

Undocumented.

double
at int index;

Undocumented.

int
elementByteSize;

Undocumented.

int
hash;

Undocumented.

(pointer, int)
pointerToElements (int, int) (start, len);

Undocumented.

class (State)
mutableCopyClass;

Return theMutableIntArray class.

File tom/IntDictionary

class tom.IntDictionary
A IntDictionary maps anint to an object reference.

inherits

State supers:HashTable

instance tom.IntDictionary
methods

166

Chapter 8. Unittom

Any

at int key;

Undocumented.

Enumerator

enumerator;

Return avalueEnumerator .

Enumerator

valueEnumerator;

Return an Enumerator on the values stored in this dict.

class tom.MutableIntDictionary
inherits

State supers:IntDictionary , HashTableContainer

instance tom.MutableIntDictionary
methods

void
freeze;

Undocumented.

void
remove int key;

Remove the mapping for thekey .

void
set All value

at int key
pre

value != nil;

Associate thevalue with thekey .

167

Chapter 8. Unittom

File tom/IntegerRangeSet

class tom.IntegerRangeSet
The IntegerRangeSet is good at holding ranges of integers. Ranges are stored in an unbalanced
tree. The number of ranges dictates the memory usage by the set. Testing for membership is O(log n)
where n is the number of ranges.

inherits

State supers:State , Enumerable

instance tom.IntegerRangeSet
variables

IntegerRangeSetNode root;

The root of the tree holding information.

methods

boolean
add int v;

Add v to the receiving set. ReturnFALSE if it was already present;TRUEotherwise.

boolean
equal id other;

Undocumented.

boolean
equalIntegerRangeSetNode IntegerRangeSetNode other;

Undocumented.

id
intersectionWith id other;

Return a new set being the intersection of the receiving set and theother set.

boolean
isEmpty;

Undocumented.

boolean
isSubsetOf id other;

ReturnYES if the receiving set is a subset of theother set.

168

Chapter 8. Unittom

(boolean, int) (non_empty, value)
highestPresent;

Return the highest value present in the set.

(boolean, int) (non_empty, value)
lowestPresent;

Return the lowest value present in the set.

boolean
member int v;

ReturnTRUEiff the set containsv .

int
nextNonPresent int i;

Return the smallest element >=i that is not yet in the set.

(boolean, int)
nextPresent int i;

Return the smallest element >i that is contained in the tree, preceded by whether such an element
actually is in the tree.

int
previousNonPresent int i;

Return the largest element <=i that is not yet in the set.

(boolean, int)
previousPresent int i;

Return the largest element <=i that is in the set.

boolean (b)
remove int v;

Removev from the set, returningTRUEif it was actually contained.

void
shiftFrom int i;

Increase the value of all elements in the tree >=i by one.

(boolean, int)
smallestElement;

Return the smallest value contained, preceded by whether we’re not empty.

169

Chapter 8. Unittom

void
uniteWith id other;

Modify the receiving set by adding the elements from the other set.

OutputStream

write OutputStream s;

Undocumented.

Enumerator

enumerator;

Undocumented.

protected id
initWithEnumerator Enumerator e;

Undocumented.

class tom.IntegerRangeSetNode
inherits

State supers:State

instance tom.IntegerRangeSetNode
variables

id left;

The left and right subtrees.

id right;

int offset;

The offset from our parent.

int size;

The number of integers in this node.

methods

boolean
add int v;

Add v to the tree rooted at the receiving node. ReturnFALSEif it was already present;TRUEotherwise.

170

Chapter 8. Unittom

boolean
equalIntegerRangeSetNode id other;

Undocumented.

id
init (int, int) (o, s);

Designated initializer.

int
highestPresent;

Return the highest value present in the set.

int
lowestPresent;

Return the lowest value present in the set.

boolean
member int v;

ReturnTRUEiff the set containsv .

int
nextNonPresent int i;

Return the smallest element >=i that is not yet in the tree.

(boolean, int)
nextPresent int i;

Return the smallest element >i that is contained in the tree, preceded by whether such an element
actually is in the tree.

int
previousNonPresent int i;

Return the largest element <=i that is not yet in the tree.

(boolean, int)
previousPresent int i;

Return the largest element in the tree which is smaller thani .

(id, boolean)
remove int v;

Removev from the receiving tree, returning the modified tree, andTRUEif it was actually removed.

171

Chapter 8. Unittom

void
shiftFrom int i;

Increase the value of all elements in the tree >=i by one.

int
smallestElement;

Return the smallest value contained.

OutputStream

write OutputStream s
offset int i;

Undocumented.

protected (id, id, int, int)
dissect;

Return the guts of this object.

protected (id, int)
mergeLRL int v;

Merge the subtree rooted at this node, to accomodate the valuev , returning the modified tree and the
extra size for our parent node. Our parent actually holds the valuev (as the first value).

protected (id, int)
mergeRLL int v;

Merge the subtree rooted at this node, to accomodate the valuev , returning the modified tree and the
extra size for our parent node. Our parent actually holds the valuev (as the last value).

protected void
offset int n;

Adjust theoffset by n.

protected void
set_right id n;

Set theright node.

protected void
setRightMost id r;

Set the right most node of the receiving tree tor .

172

Chapter 8. Unittom

class tom.IntegerRangeSetNodeEnumerator
inherits

State supers:State , Enumerator

instance tom.IntegerRangeSetNodeEnumerator
variables

IntegerRangeSetNode root;

The root of the tree of nodes.

int previous;

The previous integer value retrieved.

methods

id
init IntegerRangeSetNode r;

Undocumented.

(boolean, Number)
next;

Undocumented.

(boolean, int) (valid, value)
next;

Undocumented.

File tom/Invocation

class tom.Invocation
An Invocation is an object holding a target object, a selector, and arguments to the selector. Thus,
anInvocation holds everything needed to send a message. AnInvocation can be fired at its target
(with the fire method), or fired after retargeting (using thefireAt method).

An Invocation is incomplete when not all arguments needed to send the message have been spec-
ified. An incompleteInvocation can be fired in two different ways. First, by invokingfireWith

and supplying values for the remaining arguments. Second, by invoking on theInvocation a method
completing it. For example, if anInvocation x of the methodvoid with int a do int b only

173

Chapter 8. Unittom

has a value for the argumenta, then invoking[x do 23] will (temporarily) complete theInvoca-

tion and send the full message (with do) to its target.

inherits

State supers:State

methods

instance (id)
for selector sel
to: All target = nil

with dynamic arguments;

Create a, potentially incomplete, invocation.

instance (id)
for selector sel
to: All target = nil

: Indexed arguments = nil;

Create a, potentially incomplete, invocation.

instance (id)
of selector sel

to: All target = nil
with dynamic arguments;

Create a complete invocation. This raises aprogram-condition if the resulting invocation is in-
complete.

instance (id)
of selector sel

to: All target = nil
: Indexed arguments = nil;

Create a complete invocation. This raises aprogram-condition if the resulting invocation is in-
complete.

instance (id)
of selector sel

to: All target = nil
using pointer ap;

Create an invocation. It shall be complete. This method is primarily intended to be used byProxy in
its forwarding fromforwardSelector arguments .

Arguments are to be retrieved from theva_list pointed to byap, i.e.va_arg (*ap, ...) .

174

Chapter 8. Unittom

instance tom.Invocation
variables

InvocationResult result;

The result of the most recent invocation, ornil if we haven’t fired yet, or have fired with a void
return type (of the fire method).

pointer invocation;

The underlying invocation structure.

methods

protected id
init pointer i;

Designated initializer.

boolean
isComplete;

ReturnTRUEiff the receiving invocation is complete, i.e. is has all the arguments needed and can be
fired directly withfire or fireAt .

selector
selector;

Return this invocation’s selector.

Any

target;

Return this invocation’s target.

protected InvocationResult

forwardSelector selector sel
arguments pointer ap;

Forward the selectorsel with the arguments pointed to by theva_list pointed to byap. Return the
result of the invocation.

Only the incoming arguments from*ap will be retrieved, so that subsequentva_arg invocations on
*ap can retrieve the outgoing argument pointers.

This method is invoked by the runtime library in an attempt to forward a message not directly imple-
mented by the receiver. This method is used since it is faster than aforwardInvocation .

boolean
invocationp;

175

Chapter 8. Unittom

ReturnYES.

InvocationResult

fire;

Perform the invocation. If invoked repeatedly, the invocation will be performed repeatedly.

void
fire;

Similarly, but avoid the creation of anInvocationResult . Theresult of the receiving invocation
is set tonil .

InvocationResult

fireAt All target;

Perform the invocation after setting the receiver of this invocation totarget .

void
fireAt All target;

Similarly, but avoid the creation of anInvocationResult . Theresult of the receiving invocation
is set tonil .

InvocationResult

fireWith dynamic arguments;

Perform the invocation resulting from completing this invocation with thearguments . Return the
result. The receiving invocation will remain incomplete.

void
fireWith dynamic arguments;

Similarly, but avoid the creation of anInvocationResult . Theresult of the receiving invocation
is set tonil .

Any

objectAfterFire;

Shortcut to fire and return the first element of the result as an object.

Any

objectOfResult;

Shortcut to retrieve the first element of the result as an object. This fires if needed.

InvocationResult

result;

176

Chapter 8. Unittom

If the invocation has been fired at least once, return the (most recent) result. Otherwise, fire and return
the result.

TypeDescription

resultTypeDescription;

Return the type description of the result from this invocation.

void
encodeUsingCoder Encoder coder;

Undocumented.

void
initWithCoder Decoder coder;

Undocumented.

protected void
encodeToCoder Encoder coder;

Private method to do the hard work of encoding all information carried by this invocation.

protected void
decodeFromCoder Decoder coder;

Private method to do the hard work of decoding all information from thecoder into the invocation.

void
dealloc;

Deallocate the structure underlying the invocation.

void
gc_mark_elements;

Mark the objects in this invocation’s arguments.

File tom/InvocationResult

class tom.InvocationResult
inherits

State supers:State , Constants

methods

protected instance (id)

177

Chapter 8. Unittom

with pointer result;

Return a freshly allocated instance with theresult , which is astruct trt_invocation_result .

instance tom.InvocationResult
variables

pointer values;

The actual result.

methods

protected id
init pointer result;

Designated initializer.

dynamic
components;

Retrieve all values from this result. The expected return type must fully match the actual return type.

dynamic
component int n;

Retrieve thenth element from the result. The index of the first element is 0.

The expected return type must fully match, or can be an object, in which case numeric values are
returned in aNumber instance, and selectors in aSelector . Pointer values on a mismatch cause a
condition to be signaled.

int
length;

Return the number of elements in this result.

void
setReturnValues (pointer, pointer) (first_value, extra_values)

forSelector selector sel;

From the values held by thisInvocationResult , update thebuiltin_return_type value pointed
to by first_value , and any extra return value pointers as pointed to by theva_list extra_values .

TypeDescription

typeDescription;

Return a theTypeDescription for this result.

OutputStream

178

Chapter 8. Unittom

writeFields OutputStream s;

Output the elements in this result.

void
dealloc;

Free thevalues .

void
gc_mark_elements;

Mark the objects in this result.

void
encodeUsingCoder Encoder coder;

Undocumented.

void
initWithCoder Decoder coder;

Undocumented.

protected void
encodeToCoder Encoder coder;

Private method to do the hard work of encoding all information carried by this result.

protected void
decodeFromCoder Decoder coder;

Private method to do the hard work of decoding all information from thecoder into this result.

File tom/Limits

class tom.Limits
After discussion on the TOM mailing list in April 2000, it was apparent that a <limits.h> equivalent
is useful even when the values are the same on every platform.

variables

const BYTE_MIN = 0;

179

Chapter 8. Unittom

const BYTE_MAX = 255;

const CHAR_MIN = 0;

const CHAR_MAX = 65535;

const INT_MIN = -2147483648;

const INT_MAX = 2147483647;

const LONG_MIN = -9223372036854775808;

const LONG_MAX = 9223372036854775807;

instance tom.Limits

File tom/Lock

class tom.Lock
The abstract lock.

inherits

State supers:State

instance tom.Lock
methods

deferred void
lock;

Undocumented.

deferred void

180

Chapter 8. Unittom

unlock;

Undocumented.

deferred boolean
tryLock;

Try to lock, and returnYES if it succeeded.

Any (result)
doWhileLocked Block block;

Lock, execute theblock , and guarantee to unlock.

class tom.SimpleLock
A simple lock is a binary lock.

inherits

State supers:Lock

instance tom.SimpleLock
variables

pointer lock;

The underlying lock.

methods

void
dealloc;

Undocumented.

id
init;

Designated initializer.

void
lock;

Undocumented.

void
unlock;

Undocumented.

181

Chapter 8. Unittom

boolean
tryLock;

Undocumented.

class tom.RecursiveLock
A recursive lock is a binary lock which can be obtained multiple times by the same thread.

inherits

State supers:Lock

instance tom.RecursiveLock
variables

pointer lock;

The underlying lock.

methods

void
dealloc;

Undocumented.

id
init;

Designated initializer.

void
lock;

Undocumented.

void
unlock;

Undocumented.

boolean
tryLock;

Undocumented.

182

Chapter 8. Unittom

class tom.Semaphore
A semaphore is a lock which can be locked a number of times (1 for a binary semaphore) before the
next attempt to lock will block.

When allocated first, the firstlock will block.

inherits

State supers:Lock

methods

instance (id)
new int num;

Return a newSemaphore , the firstnum lock operations will succeed.

instance tom.Semaphore
variables

pointer sem;

Pointer to the underlying structure.

methods

void
dealloc;

Undocumented.

id
init int num;

Designated initializer.

id
init;

Another initializer.

void
lock;

Undocumented.

void
unlock;

Undocumented.

183

Chapter 8. Unittom

boolean
tryLock;

Undocumented.

File tom/MutableArray

class tom.MutableArray
inherits

State supers:Array , MutableIndexed

methods

instance (id)
withCapacity int cap;

Return a new instance of the receiving class which can holdcap elements without the need for resiz-
ing.

instance tom.MutableArray
variables

public int capacity;

The capacity of the array.

methods

void
add All object;

Store theobject at the end in the receiving array. If the receiving array stores unboxed values, the
object is queried for its value.

(int, int)
adjustMutableRange (int, int) (start, len);

Adjust the range (start , len) to fit the capacity of the receivingMutableArray . If len == -1, it is
adjusted to fit the capacity.

void
empty

post
length == 0;

184

Chapter 8. Unittom

Empty the receiving array. This frees any storage used by the array to store its elements.

deferred id
initWithCapacity int capacity;

Initialize the newly allocated receiving object to be able to holdcapacity items without needing to
resize.

id
initWith int n

at pointer addr;

Initialize with the indicated pointer and integer for contents and length. Thecapacity is set to the
length .

deferred void
insert All object

at int index
pre

index >= 0 && index <= length;

Insert theobject at theindex , shifting the objects at that or a higher index up by 1 position.

deferred Any

removeAt int index;

Remove the element fromindex , decreasing the index of all elements afterindex , and return the
element boxed. If the receiving array stores unboxed values, such as integers, the value returned is the
element boxed.

void
removeElementAt int index;

Remove the element fromindex , decreasing the index of all elements afterindex .

deferred void
removeElements (int, int) (start, length);

Remove thelength elements fromstart . If length == -1, all elements fromstart are removed.

void
resize int to

pre
to >= 0;

Adjust the size of the array, filling any newly created entries with the default value for the type (i.e.
0).

deferred void
resize (int, int) (start, num);

185

Chapter 8. Unittom

Adjust the size of the array by insertingnum new entries atstart filling newly created entries with
the default values for the type (i.e. 0).

void
truncate int new_length

pre
new_length >= 0;

Adjust the length of this array tonew_length .

void
bubbleSortUsingKey selector key

comparator: selector cmp = selector (int compare All);

Bublesort the receiving array on thekey of the contained elements by comparing them using the
compare selector.

void
quickSortUsingKey selector key

comparator: selector compare = selector (int compare All);

Quicksort the receiving array on thekey of the contained elements by comparing them using the
compare selector.

id
initCopy;

In addition to what oursuper does, adjust our (new)capacity to fit our length .

File tom/MutableByteArray

class tom.MutableByteArray
inherits

State supers:ByteArray , MutableArray , OutputStream

instance tom.MutableByteArray
methods

void
add byte b;

Undocumented.

void

186

Chapter 8. Unittom

freeze;

Undocumented.

id
initWithCapacity int capacity;

Undocumented.

protected id
initWithEnumerator Enumerator e;

Undocumented.

byte
removeAt int index;

Undocumented.

Any

removeAt int index;

Undocumented.

void
removeElements (int, int) (start, length);

Undocumented.

void
resize (int, int) (start, num);

Undocumented.

void
set byte b

at int index;

Undocumented.

void
set char c

at int index;

Undocumented.

void
set All object

at int index;

Undocumented.

187

Chapter 8. Unittom

void
swap (int, int) (i, j);

Undocumented.

void
initWithCoder Decoder coder;

Undocumented.

void
close;

Undocumented.

int
readRange (int, int) (start, num)

fromByteStream ByteStream f;

Undocumented.

int
readRange (int, int) (start, num)

fromByteArray ByteArray source
to int position;

Undocumented.

void
write byte b;

Undocumented.

int
write byte b;

Undocumented.

int
writeBytes int num

from pointer address;

Undocumented.

int
writeBytes int num

from pointer address
at int offset;

Undocumented.

188

Chapter 8. Unittom

class tom.Data
inherits

State supers:MutableByteArray

instance tom.Data

File tom/MutableByteString

class tom.MutableByteString
inherits

State supers:ByteString , MutableString , MutableByteArray

instance tom.MutableByteString
methods

void
freeze;

Undocumented.

ByteString

frozen;

Undocumented.

protected id
init (pointer, int) (p, num);

Undocumented.

id
initCopy (pointer, int) (p, num);

In addition to what oursuper does, adjust our (new)capacity to fit our length .

void
set char c

at int index;

Set the byte atindex to the characterc , converted to abyte according to thedefault_encoding .

void
add char c;

189

Chapter 8. Unittom

Add the byte encoding of thechar c to this string.

ByteString

substring (int, int) (start, len);

Override theByteString implementation of thissubstring method, since that actually employs
ByteSubstring objects which we can’t use.

File tom/MutableCharArray

class tom.MutableCharArray
inherits

State supers:CharArray , MutableArray

instance tom.MutableCharArray
methods

void
add char c;

Undocumented.

void
freeze;

Undocumented.

id
initWithCapacity int capacity;

Undocumented.

protected id
initWithEnumerator Enumerator e;

Undocumented.

char
removeAt int index;

Undocumented.

void
removeElements (int, int) (start, length);

190

Chapter 8. Unittom

Undocumented.

void
resize (int, int) (start, num);

Undocumented.

void
set char c

at int index;

Undocumented.

CharNumber

removeAt int index;

Undocumented.

void
set All object

at int index;

Undocumented.

void
swap (int, int) (i, j);

Undocumented.

File tom/MutableCharString

class tom.MutableCharString
inherits

State supers:CharString , MutableString , MutableCharArray

instance tom.MutableCharString
methods

void
freeze;

Undocumented.

protected id
init (pointer, int) (p, num);

191

Chapter 8. Unittom

Undocumented.

File tom/MutableDoubleArray

class tom.MutableDoubleArray
inherits

State supers:DoubleArray , MutableArray

instance tom.MutableDoubleArray
methods

void
add double d;

Undocumented.

void
freeze;

Undocumented.

id
initWithCapacity int capacity;

Undocumented.

protected id
initWithEnumerator Enumerator e;

Undocumented.

double
removeAt int index;

Undocumented.

Any

removeAt int index;

Undocumented.

void
removeElements (int, int) (start, length);

Undocumented.

192

Chapter 8. Unittom

void
resize (int, int) (start, num);

Undocumented.

void
set double d

at int index;

Undocumented.

void
set All object

at int index;

Undocumented.

void
swap (int, int) (i, j);

Undocumented.

File tom/MutableFloatArray

class tom.MutableFloatArray
inherits

State supers:FloatArray , MutableArray

instance tom.MutableFloatArray
methods

void
add float f;

Undocumented.

void
freeze;

Undocumented.

id
initWithCapacity int capacity;

Undocumented.

193

Chapter 8. Unittom

protected id
initWithEnumerator Enumerator e;

Undocumented.

float
removeAt int index;

Undocumented.

Any

removeAt int index;

Undocumented.

void
removeElements (int, int) (start, length);

Undocumented.

void
resize (int, int) (start, num);

Undocumented.

void
set float f

at int index;

Undocumented.

void
set All object

at int index;

Undocumented.

void
swap (int, int) (i, j);

Undocumented.

File tom/MutableIntArray

class tom.MutableIntArray
inherits

194

Chapter 8. Unittom

State supers:IntArray , MutableArray

instance tom.MutableIntArray
methods

void
add int i;

Undocumented.

void
freeze;

Undocumented.

id
initWithCapacity int capacity;

Undocumented.

protected id
initWithEnumerator Enumerator e;

Undocumented.

int
removeAt int index;

Undocumented.

Any

removeAt int index;

Undocumented.

void
removeElements (int, int) (start, length);

Undocumented.

void
resize (int, int) (start, num);

Undocumented.

void
set int i

at int index;

195

Chapter 8. Unittom

Undocumented.

void
set All object

at int index;

Undocumented.

void
swap (int, int) (i, j);

Undocumented.

File tom/MutableObjectArray

class tom.MutableObjectArray
inherits

State supers:ObjectArray , MutableArray

methods

instance (id)
with int num

copies All o;

Return a newly allocatedMutableObjectArray with num copies of the object referenceo. Sinceo

is a reference to an actual object, onlynumcopies of that reference are stored: the object is not copied
at all.

instance tom.MutableObjectArray
methods

void
freeze;

Undocumented.

id
initWithCapacity int capacity;

Undocumented.

protected id
initWithEnumerator Enumerator e;

196

Chapter 8. Unittom

Undocumented.

void
insert All object

at int index;

Undocumented.

Any

removeAt int index;

Undocumented.

void
removeElements (int, int) (start, length);

Undocumented.

void
resize (int, int) (start, num);

Undocumented.

void
set All object

at int index;

Undocumented.

void
swap (int, int) (i, j);

Undocumented.

void
encodeUsingCoder Encoder coder;

Undocumented.

void
initWithCoder Decoder coder;

Undocumented.

197

Chapter 8. Unittom

File tom/MutablePointerArray

class tom.MutablePointerArray
inherits

State supers:PointerArray , MutableArray

instance tom.MutablePointerArray
methods

void
add pointer d;

Undocumented.

void
freeze;

Undocumented.

id
initWithCapacity int capacity;

Undocumented.

protected id
initWithEnumerator Enumerator e;

Undocumented.

pointer
removeAt int index;

Undocumented.

Any

removeAt int index;

Undocumented.

void
removeElements (int, int) (start, length);

Undocumented.

void
resize (int, int) (start, num);

198

Chapter 8. Unittom

Undocumented.

void
set pointer d

at int index;

Undocumented.

void
set All object

at int index;

Undocumented.

void
swap (int, int) (i, j);

Undocumented.

File tom/MutableString

class tom.MutableString
inherits

State supers:String , MutableArray

instance tom.MutableString
methods

deferred void
set char c

at int i;

Undocumented.

File tom/Number

class tom.Number
inherits

State supers:State

methods

199

Chapter 8. Unittom

instance (id)
with byte value;

Undocumented.

instance (id)
with char value;

Undocumented.

instance (id)
with int value;

Undocumented.

instance (id)
with long value;

Undocumented.

instance (id)
with float value;

Undocumented.

instance (id)
with double value;

Undocumented.

instance tom.Number
methods

deferred byte
byteValue;

Undocumented.

deferred char
charValue;

Undocumented.

deferred int
intValue;

Undocumented.

deferred long

200

Chapter 8. Unittom

longValue;

Undocumented.

deferred float
floatValue;

Undocumented.

deferred double
doubleValue;

Undocumented.

int
hash;

Undocumented.

boolean
equal Number n;

Undocumented.

deferred int
compare Number n;

Undocumented.

deferred int
compare byte v;

Undocumented.

deferred int
compare char v;

Undocumented.

deferred int
compare int v;

Undocumented.

deferred int
compare long v;

Undocumented.

deferred int
compare float v;

201

Chapter 8. Unittom

Undocumented.

deferred int
compare double v;

Undocumented.

deferred protected id
init byte value;

Undocumented.

deferred protected id
init char value;

Undocumented.

deferred protected id
init int value;

Undocumented.

deferred protected id
init long value;

Undocumented.

deferred protected id
init float value;

Undocumented.

deferred protected id
init double value;

Undocumented.

boolean
dump_simple_p;

Undocumented.

File tom/ObjectArray

class tom.ObjectArray
inherits

202

Chapter 8. Unittom

State supers:Array

methods

instance (id)
with dynamic elements;

Undocumented.

instance tom.ObjectArray
methods

protected id
initWithEnumerator Enumerator e;

Undocumented.

int (v)
hash;

Hash some elements.

boolean
equal id other;

Compare the elements.

Any

at int index
pre

index >= 0 && index < length
post

length == old length;

Return the object atindex in the receiving array.

boolean
dump_self_p;

ReturnTRUE.

void
dumpSelf MutableKeyed done

indent MutableByteString prefix
simple boolean allow_simple

level int level
to OutputStream s;

Dump the elements to the streams .

203

Chapter 8. Unittom

int
elementByteSize;

Undocumented.

(pointer, int)
pointerToElements (int, int) (start, len);

Undocumented.

protected void
setDuringConstruction (int, All) (index, object)

pre
index >= 0 && index < length;

Set theobject at theindex in the receiving array, even if it is not a mutable array. This method
/must/ only be used during construction of a constant array object.

class (State)
mutableCopyClass;

Return theMutableObjectArray class.

id
deepen int level

mutably: boolean mutable_p = NO;

Deepen this copy.

void
encodeUsingCoder Encoder coder;

Undocumented.

void
initWithCoder Decoder coder;

Undocumented.

redefine void
gc_mark_elements;

This method is invoked by the garbage collector to have the receiving object mark the elements it
references. AnObjectArray must reference the objects it holds.

204

Chapter 8. Unittom

File tom/Pointer

class tom.Pointer
This Pointer class is a simple object wrapper around an object value.

inherits

State supers:State

methods

int (result)
hash pointer p;

Hash the pointerp. This hashes the pointer in a way similar to thehashq method ofAll .

instance (id)
with pointer p;

Simple allocator.

instance tom.Pointer
variables

public pointer value;

Our value.

methods

id (self)
init pointer p;

Designated initializer.

boolean
dump_simple_p;

ReturnYES.

boolean
equal Pointer other;

Compare ourvalue with theother ’s.

int
hash;

Return the hashed pointervalue .

205

Chapter 8. Unittom

OutputStream

write OutputStream s;

Similar to aNumber, aPointer simply outputs thevalue .

File tom/PointerArray

class tom.PointerArray
inherits

State supers:Array

methods

instance (id)
with dynamic elements;

Undocumented.

instance tom.PointerArray
methods

protected id
initWithEnumerator Enumerator e;

Undocumented.

Any

at int index;

Undocumented.

pointer
at int index;

Undocumented.

int
elementByteSize;

Undocumented.

(pointer, int)
pointerToElements (int, int) (start, len);

Undocumented.

206

Chapter 8. Unittom

class (State)
mutableCopyClass;

Return theMutablePointerArray class.

File tom/PointerDictionary

class tom.PointerDictionary
A PointerDictionary maps apointer to an object reference.

inherits

State supers:EqHashTable , DictionaryContainer

instance tom.PointerDictionary
methods

Any

at pointer key;

Undocumented.

class tom.MutablePointerDictionary
inherits

State supers:PointerDictionary , MutableEqHashTable

instance tom.MutablePointerDictionary
methods

void
remove pointer key;

Remove the mapping for thekey .

void
set All value

at pointer key
pre

value != nil;

Associate thevalue with thekey .

207

Chapter 8. Unittom

File tom/Queue

class tom.Queue
The abstract Queue class. There is not much you can do with it as queue has to be mutable to do
anything useful.

inherits

State supers:Indexed

instance tom.Queue
methods

boolean
queuep;

Return TRUE.

deferred boolean
emptyp;

Return TRUE for empty queues.

class tom.MutableQueue
inherits

State supers:Queue, MutableIndexed

instance tom.MutableQueue
methods

deferred void
add Any object;

Push an object to the head of the queue.

deferred Any

pop;

Pop the object from the tail of the queue.

class tom.MutableObjectQueue
inherits

State supers:MutableQueue , Conditions

208

Chapter 8. Unittom

instance tom.MutableObjectQueue
variables

int offset;

The index into thecontents of the elementself[0] .

int elements;

The number of elements.

MutableObjectArray contents;

The array holding the actual objects.

methods

Any

at int index
pre

index >= 0 && index < elements;

Undocumented.

void
set All object

at int index
pre

index >= 0 && index < elements;

Undocumented.

int
length;

Undocumented.

void
add Any object;

Add theobject to the end.

boolean
emptyp;

Undocumented.

Any

pop;

Retrieve the object atself[0] and remove it. All in constant time, of course.

209

Chapter 8. Unittom

id (self)
empty;

Make the queue empty.

File tom/Random

class tom.Random
inherits

Behaviour supers:All

instance tom.Random
inherits

Behaviour supers:All

methods

deferred double
next;

Return a double random number.

deferred int
next;

Return an integer random number.

int (result)
next int limit

pre
limit > 1

post
result >= 0 && result < limit;

Return a number in the range [0, limit).

class tom.IntegerRandom
Superclass for use by random number generators which customarily return ints.

inherits

State supers:Random, Limits

210

Chapter 8. Unittom

instance tom.IntegerRandom
methods

double
next;

Return the next double value, in the range [0, 1.0).

class tom.DoubleRandom
Superclass for use by random number generators which customarily return ints.

inherits

State supers:Random, Limits

instance tom.DoubleRandom
methods

int (result)
next;

Return the next integer value, in the range [0, INT_MAX].

class tom.MinimalRandom
MinimalRandom implementsIntegerRandom . It uses seeds to generate a repeatable sequence of
pseudo-random integers.

inherits

State supers:State , IntegerRandom

variables

const ia = 16807;

Constants needed by the algorithm.

const im = 2147483647;

const iq = 12773;

const ir = 2836;

211

Chapter 8. Unittom

instance tom.MinimalRandom
variables

int seed;

The seed from which we feed.

methods

id (self)
init int initial_seed

pre
initial_seed > 0;

Designated initializer.

id
init;

Initialize this instance with a seed derived from the current moment in time and thehashq value of
self .

int
next;

Return the next random positiveint value.

File tom/RandomDouble

class tom.Ranecu
This is a Random number generator called Ranecu. A lot of the actual code was borrowed from the
RngPack 1.0 Java package by Paul Houle.

This is a quote from the "Ranecu.java":

"Ranecu is an advanced multiplicative linear congruential random number generator with a period of
aproximately 10e18"

References:

http://www.msc.cornell.edu/~houle/rngpack

F. James, "Comp. Phys. Comm." 60 1990 p 329-344 P. L‘Ecuyer, "Commun. ACM." 1988 1988 p
742.

inherits

State supers:State , DoubleRandom

212

Chapter 8. Unittom

variables

const DEFSEED1 = 12345;

Default seeds.

const DEFSEED2 = 67890;

methods

instance (id) (r)
new;

Return a newly allocated instance, initialized with a random seed.

instance (id)
newWithDefault;

Return a newly allocated instance, initialized with a default seed.

instance (id)
newWithSeed int seed;

Return a newly allocated instance, initialized with the specifiedseed .

instance tom.Ranecu
variables

int iseed1;

The seed.

int iseed2;

methods

id (self)
initWithSeed (int, int) (s1, s2);

Designated initializer.

id
init;

Default initializer.

id

213

Chapter 8. Unittom

initWithSeed int seed;

Short initializer.

id
initWith Date d;

Initialize with the dated.

double
next;

Undocumented.

double
raw;

Undocumented.

long
getSeed;

Undocumented.

class tom.Ranlux
This is a Random number generator called Ranlux. A lot of the actual code was borrowed from the
RngPack 1.0 Java package by Paul Houle.

References:

http://www.msc.cornell.edu/~houle/rngpack F. James, "Computer Physics Communications" 79 (1994)
111 http://www.camk.edu.pl/~tomek/html.refs/ranlux.f90_2.html.

inherits

State supers:State , DoubleRandom

variables

const maxlev = 4;

Maximum luxury level.

const lxdflt = 3;

Default luxury level.

const igiga = 1000000000;

214

Chapter 8. Unittom

const jsdflt = 314159265;

const twop12 = 4096;

const itwo24 = 1 << 24;

const icons = 2147483563;

methods

instance (id) (r)
new;

Undocumented.

instance (id)
newWithDefault;

Undocumented.

instance (id)
newWithSeed int seed;

Undocumented.

instance tom.Ranlux
variables

MutableIntArray iseeds;

MutableIntArray isdext;

MutableIntArray next;

int luxlev;

215

Chapter 8. Unittom

int nskip;

int inseed;

int jseed;

int in24;

int kount;

int mkount;

int i24;

int j24;

MutableFloatArray seeds;

float carry;

float twom24;

float twom12;

MutableIntArray ndskip;

methods

id (self)
init;

216

Chapter 8. Unittom

Undocumented.

id (self)
initWithSeed int ins;

Undocumented.

id (self)
initWithSeed int ins

atLux int lux;

Undocumented.

void
initLux;

Undocumented.

void
initArrays;

Undocumented.

double
next;

Undocumented.

double
raw;

Undocumented.

void
rluxdef;

Undocumented.

void
rluxgo (int, int) (lux, ins);

Undocumented.

class tom.Ranmar
This is a Random number generator called Ranmar. A lot of the actual code was borrowed from the
RngPack 1.0 Java package by Paul Houle.

This is a quote from the "Ranmar.java" :

217

Chapter 8. Unittom

"[Ranmar] is a lagged Fibonacci generator proposed by Marsaglia and Zaman and is a good research
grade generator."

References:

http://www.msc.cornell.edu/~houle/rngpack.

inherits

State supers:DoubleRandom , State

variables

const DEFSEED = 54217137;

Default seed.

const BIG_PRIME = 899999963;

The 46,009,220th prime number, the largest prime less than 9*10e8. Used as a modulus because
this version ofRANMARneeds a seed between 0 and 9*10e8 andBIG_PRIME isn’t commensurate
with any regular period.

methods

instance (id) (r)
new;

Undocumented.

instance (id)
newWithDefault;

Undocumented.

instance (id)
newWithSeed int seed;

Undocumented.

instance tom.Ranmar
variables

MutableDoubleArray u;

MutableDoubleArray uvec;

218

Chapter 8. Unittom

double c;

double cd;

double cm;

int i97;

int j97;

methods

id (self)
init;

Undocumented.

id (self)
initWithSeed int seed;

Undocumented.

id (self)
initWith Date d;

Undocumented.

void
ranmarin int ijkl;

Undocumented.

double
next;

Undocumented.

double
raw;

Undocumented.

219

Chapter 8. Unittom

File tom/Runtime

class tom.Runtime
The Runtime class provides an interface to the functionality in the runtime library and other process
related information.

Most variables of theRuntime class are notpublic , since they can be accessed by simply inheriting
Runtime .

inherits

State supers:Conditions , Constants , stdio

variables

static String hostname;

The name of the host on which this program is running.

static public String program_name;

The name under which this program was invoked (i.e. the basename of argv[0] in C).

static public String long_program_name;

The long program name (i.e. argv[0] in C).

static Array arguments;

The arguments as passed tomain .

static Array all_arguments;

All the arguments, before anyload method modified it.

static Mapped environment;

The environment.

static private ByteString main_resource_dir;

The directory holding the main resources, at least including the character encodings.

static private MutableMapped classes_by_name;

The dictionary of classes. Mapping from name to array of classes with that name. Since this is
created upon request and it is reset by dynamic loading, it is not publicly available. Access it
through theclasses_by_name method.

static private int quit_inhibit;

Iff !0, quit (SIGINT , the user interrupt signal) is inhibited.

220

Chapter 8. Unittom

static boolean quit_pending;

Iff !0, a signal-int will be raised whenquit_inhibit andpanic_mode again reach 0.

static int panic_mode;

Iff !0, any signal received (excluding the interrupt signal), other condition signaled or raised, or
any object thrown will simply cause an abort. This is used to protect critical sections in the run-
time, such as during garbage collection or object allocation. Ifpanic_mode is set,quit_inhibit

is implicitly set too.

static boolean core_on_fatal;

Iff TRUE, a corefile will be produced on fatal errors, such as uncaught condition raises.

static boolean stacktrace_on_fatal;

Iff TRUE, a stacktrace will be printed on fatal errors, such as uncaught condition raises. This
facility is dependent upon the stacktrace generation being implemented on the platform in use.

static int gc_alloc_since_partial;

The number of objects allocated since the last partial garbage collection run. In this respect, a
partial run completing a full run is still considered a partial run.

static int gc_alloc_since_total;

The number of objects allocated since the previous completed run. This excludes the objects
counted bygc_alloc_since_partial ; it is adjusted after a run is initiated, before the run is
actually started.

static boolean gc_stat_at_exit;

Iff TRUEstatistics on memory usage and the garbage collector will be emitted upon exit.

static boolean rt_stat_at_exit;

Iff TRUEoutput statistics on the runtime structures at exit.

static boolean rt_num_inst_at_exit;

Iff TRUEoutput the number of live instances of each class at exit.

static int gc_num_runs;

Statistics on the garbage collector and allocator, in order: the number of gc runs; the number of
runs which complete a full run; the number of object allocated; the number of objects deallo-
cated; the (real, i.e. elapsed) time spent protecting, marking, and sweeping; and the time spent in
all of gc (this is the sum of the previous three, plus overhead).

static int gc_num_complete;

221

Chapter 8. Unittom

static long gc_num_alloc;

static long gc_num_dealloc;

static double gc_total_protect;

static double gc_total_mark;

static double gc_total_sweep;

static double gc_total_all;

static int malloc_cur_bytes;

These numbers are only maintained if the runtime library was not instructed to not do so at
compile time.

static int malloc_max_bytes;

static int malloc_cum_bytes;

static int malloc_cur_items;

static int malloc_max_items;

static int malloc_cum_items;

static int gc_inhibit;

Iff !0, garbage collection won’t be run. This is important during, for instance, enumerating a
Container, since (most) enumerators can not handle the collection changing while they are enu-
merating.

222

Chapter 8. Unittom

static private boolean gc_atomic;

Iff TRUE(the default), garbage collection will run atomically, irrespective of the time constraint
argument togarbageCollect . When running with atomic garbage collection, new objects are
white (presumed dead) whereas with non-atomic garbage collection, new objects are gray (pre-
sumably alive).

A program using atomic garbage collection needs less memory, since only one run is needed to
reclaim a dead object, instead of two runs. It also means that, for example, in a multi-threaded
program, the thread doing garbage collection will block all other threads.

static boolean gc_atomic_next;

The desired value ofgc_atomic , which will take effect after the next GC run. Default is what-
ever the value ofgc_atomic was at startup.

static boolean gc_full_at_exit;

Iff TRUEall garbage will be cleaned upon exit. This is a debugging tool mostly.

static int gc_debug;

The level of debugging garbage output by the garbage collector. Information is output tostderr

stream provided by the C library. No information will be output ifgc_debug is 0 or if the runtime
was not compiled with the appropriate flags.

static int gc_partial_threshold;

Threshold forgc_alloc_since_partial before a garbage collection run will be initiated. If
gc_partial_threshold is 0, garbage collection is never run implicitly. The default value is
25000, or the value passed as:gc-pth on the command line.

static double gc_partial_time_limit;

The time allowed for a partial garbage collection run when initiated bygc_alloc_since_partial

exceedinggc_partial_threshold . The default is 0, implying no time limit.

static int gc_total_threshold;

When a partial garbage collection run is initiated andgc_alloc_since_total exceedsgc_total_threshold ,
thegc_partial_time_limit is ignored and instead thegc_total_time_limit is used. If
gc_total_threshold is 0, it is ignored.

static double gc_total_time_limit;

The time limit used in case the condition described forgc_total_threshold applies.

static boolean preconditions_enabled;

Iff TRUE, preconditions are checked.

223

Chapter 8. Unittom

static boolean postconditions_enabled;

Iff TRUE, postconditions are checked.

static boolean rt_print_signals;

Iff TRUE, unhandled signals are printed on[stdio err] . This is for debugging purposes.

methods

int
start (All , selector) (object, sel)

arguments Array arguments;

This method is invoked by the runtime library. Its main responsibility is to invoke the real main
method, which is identified by thesel andobject .

void
exit int rc;

Normal level exit. Cleaning up will be performed.

void
fastExit int rc;

Low level exit. Usual functionality for cleaning up is avoided.

void
unhandledSignal Condition condition;

Output information on the unhandled signalcondition on [stdio err] .

void
willExit int rc;

Perform all things necessary for a clean exit. This runs the garbage collector if specified by a:gc-

exit , dumps gc statistics if specified by:gc-stat , number of instances if specified by:rt-inst ,
and memory overhead information if specified by:rt-stat .

OutputStream

help OutputStream s
done MutableKeyed done;

Output help information about the facilities (most notably ‘:’ arguments) offered by the receiving
class, on theOutputStream s.

Any implementation should add itself to the setdone , and check for presence before outputting
anything, to avoid generating the same output for every subclass not overriding this method.

void
load MutableArray arguments;

224

Chapter 8. Unittom

Scan the arguments to the program for something telling us whether or how to do certain things.

See the output of:help of any TOM program for short information on the options.

void
preload MutableArray arguments;

Invoked by the runtime library before the first load is invoked.

This method is needed for two occasions: first is to check for:help . The reason this is not done in
load is to be able to get some help before any negative side effects of anyload method. The second
reason is for finding:rt-resource-dir , which must be done beforeByteString ’s load method
can play with its encoding.

void
reportNumInstances OutputStream s

includeZeroes: boolean zeroes = FALSE;

Output to the streams the number of live instances for each class. If the optionalzeroes is TRUE,
classes with zero instances are included in the report. This includes deferred classes, as they cannot
have any instances.

protected void
runtimeStatistics OutputStream s;

Output the actual statistics for:rt-stat to the streams .

Indexed

classes;

Return the array of all class objects.

Mapped

classes_by_name;

Return the, possibly created upon request, mapped collection of classes keyed on their name.

class (State) (class_object)
classNamed String name;

Return the class with thename.

Name may be unqualified, as in"Runtime" , which will return the single class with that name, ornil

in case such a class does not exist, or if more than one class with that name exists in multiple units.

Thename may be qualified, as in"tom.Runtime" , in which case theRuntime class of thetom unit
will be returned, if that unit and class within that unit exist.

selector
selectorNamed String name;

225

Chapter 8. Unittom

Return the existing selector known by thename.

boolean
selector selector s1

equals selector s2;

ReturnTRUEiff the selectorss1 ands2 denote the same selector.

String

nameOfSelector selector sel;

Return the name of theselector .

selector
nullSelector;

Return the invalid selector.

void
garbageCollect;

Run the garbage collector to the end of a full garbage collection run.

void
garbageCollect double time

pre
gc_atomic -> !time;

Run the garbage collector for at mosttime seconds.

void
disableGC

pre
gc_inhibit >= 0

post
gc_inhibit == old gc_inhibit + 1;

Increase thegc_inhibit . This invocation should be matched by an invocation ofenableGC .

void
enableGC

pre
gc_inhibit > 0

post
gc_inhibit == old gc_inhibit - 1;

Decrease thegc_inhibit .

Mapped

environment;

226

Chapter 8. Unittom

Return the dictionary holding the process environment. The dictionary is filled upon the first request,
thread-safely.

ByteString

main_resource_dir;

Return themain_resource_dir .

void
setenv (String , String) (environment_variable, value);

Set thevalue of theenvironment_variable , thread-safely.

String

hostname;

Return thehostname of this machine. If the class variable is not set, it is set once from gethost-
name(2).

String

tom_prefix;

Return the directory in which all TOM stuff has been installed. This returns the value ofTOM_PREFIX

in theConstants class.

Any

perror String prefix
for All object

class ConditionClass condition_class
raise boolean not_signal;

Construct aCondition for theobject with thecondition_class and a message created from the
(optional) prefix, plus the information available from the (ANSI C)errno variable. Ifnot_signal

is TRUE, the new condition is raised; otherwise it is signaled and the result is returned (if a return is
allowed).

int
quit_inhibit;

Accessor method forquit_inhibit which is private to theRuntime class to protect it against being
mutated by subclasses but which can be freely read, hence this method.

void
quit_disable;

Increase thequit_inhibit flag. Any increase should be accompanied later on by the corresponding
decrease.

void
quit_enable

227

Chapter 8. Unittom

pre
quit_inhibit > 0;

Decrease thequit_inhibit flag, raising a postponsedsignal-int if indicated byquit_pending .

int
panic_mode;

Accessor method forpanic_mode which is private to theRuntime class to protect it against being
mutated by subclasses but which can be freely read, hence this method.

void
panic_enable;

Increase thepanic_mode flag. Any increase should be accompanied later on by the corresponding
decrease.

void
panic_disable

pre
panic_mode > 0;

Decrease thepanic_mode flag, raising asignal-int if requested byquit_pending .

Array

crawlStack;

Return the return addresses currently outstanding on the CPU stack (up to the first 100). Information
about these pointers may be obtained from[Runtime symbolInfo] .

(ByteString , pointer, ByteString , pointer, pointer) (file_name, base_address, sym-
bol_name, symbol_address, offset)

symbolInfo pointer address;

Return extensive symbol information on the ADDRESS.

void
printStack OutputStream stream

ignoreUntil: String ignore_until_symbol = "";

Print a stack trace to anOutputStream .

instance tom.Runtime
TheRuntime instance is totally empty.

228

Chapter 8. Unittom

File tom/Selector

class tom.Selector
A Selector is an object wrapper for a selector.

inherits

State supers:State

methods

instance (id)
with selector sel;

Return an instance ofSelector wrapping theselector sel .

instance tom.Selector
variables

selector sel;

The selector which we wrap.

methods

id (self)
init selector s;

Designated initializer.

int
hash;

Return the identity of the selector.

boolean
equal id other;

Return whether or not the selector wrapped byself is equal toother .

String

name;

Return the name of the selector.

selector
selector;

Return the selector we wrap.

229

Chapter 8. Unittom

void
encodeUsingCoder Encoder coder;

Encode the receivingSelector object. This writes the name of the selector as the means of identify-
ing the selector upon decoding. (The selector itself can’t be written since encoding a selector actually
encodes aSelector object.)

void
initWithCoder Decoder coder;

Initialize the receivingSelector from thecoder .

File tom/Set

class tom.Set
inherits

State supers:HashTable , Keyed

instance tom.Set
methods

Any

member All object;

InvokeHashTable ’s implementation.

Any

memq All object;

InvokeHashTable ’s implementation.

Enumerator

enumerator;

Return an enumerator on the receiving set.

Enumerator

keyEnumerator;

Undocumented.

class tom.MutableSet
inherits

230

Chapter 8. Unittom

State supers:Set , MutableHashTable , MutableKeyed , Container

instance tom.MutableSet
methods

void
add All object;

Undocumented.

void
remove All object;

Removeelt from the receiving set, if present.

class tom.SetEnumerator
inherits

State supers:HashTableEnumerator

instance tom.SetEnumerator
variables

redeclare BucketSetElement elt;

methods

(boolean, Any) (valid, object)
next;

Undocumented.

File tom/Sorted

class tom.SortedKeyed
The SortedKeyed class keeps its elements in ascending order.

inherits

State supers:Keyed

231

Chapter 8. Unittom

instance tom.SortedKeyed
methods

deferred Enumerator

between (Comparable , Comparable) (start, last);

Enumerate the elements in an interval.nil at the either end signifies the first or the last element.

deferred Any

lowest;

Undocumented.

deferred Any

highest;

Undocumented.

deferred redeclare Any

at Comparable object;

Undocumented.

deferred redeclare Any

member Comparable object;

Undocumented.

deferred redeclare Any

memq Comparable object;

Undocumented.

class tom.MutableSortedKeyed
inherits

State supers:SortedKeyed , MutableKeyed

instance tom.MutableSortedKeyed
methods

redeclare void
add Comparable object;

Undocumented.

redeclare void
remove Comparable object;

232

Chapter 8. Unittom

Undocumented.

class tom.SortedMapped
inherits

State supers:Mapped, SortedKeyed

instance tom.SortedMapped
methods

deferred Enumerator

valuesOfKeysBetween (Comparable , Comparable) (start, last)
includeLeft: boolean incleft = TRUE

includeRight: boolean incright = TRUE;

Enumerate the values in an interval.

class tom.MutableSortedMapped
inherits

State supers:MutableSortedKeyed , MutableMapped

instance tom.MutableSortedMapped
methods

deferred redeclare void
set All value

at Comparable key;

Undocumented.

class tom.SortedObjectArray
inherits

State supers:SortedKeyed

instance tom.SortedObjectArray
variables

public MutableObjectArray contents;

The array we employ to actually store the contents.

methods

233

Chapter 8. Unittom

boolean (result)
verifySortedContents;

Undocumented.

id
initWithSortedEnumerator Enumerator e

post
[self verifySortedContents];

Undocumented.

id
initWithEnumerator Enumerator e;

Undocumented.

ObjectArray

allKeys;

Undocumented.

(boolean, int)
indexOf Comparable object;

The guts of the binary search algorithm.

Any

at Comparable object;

Undocumented.

Enumerator

valuesOfKeysBetween (Comparable , Comparable) (start, last)
includeLeft: boolean incleft = TRUE

includeRight: boolean incright = TRUE;

Undocumented.

Any

lowest
pre

[contents length] != 0;

Undocumented.

Any

highest
pre

[contents length] != 0;

234

Chapter 8. Unittom

Undocumented.

class tom.MutableSortedObjectArray
inherits

State supers:MutableSortedKeyed , SortedObjectArray

instance tom.MutableSortedObjectArray
methods

void
empty;

Undocumented.

void
freeze;

Undocumented.

void
add Comparable object;

Add an object.

Note that adding elements one-by-one to aMutableSortedObjectArray will work as an insertion
sort, with quadratic performance. UseaddElementsFrom with another sorted set instead, as it is
much more efficient. Also, do not useaddElementsFromEnumerator unless you know that the
enumerator is sorted (and then useaddElementsFromSortedEnumerator .

void
addElementsFrom Collection object;

addElementsFrom performs in time proportional to the *sum* of the number of elements in both
collections, if the other collection is aSortedKeyed . Otherwise the complexity is equal to the *prod-
uct* of the number of the elements.

void
addElementsFromSortedEnumerator Enumerator j

post
[self verifySortedContents];

Undocumented.

void
removeElementsFrom Collection object;

Undocumented.

235

Chapter 8. Unittom

void
removeElementsFromSortedEnumerator Enumerator j

post
[self verifySortedContents];

Undocumented.

void
keepElementsFrom Collection object;

Undocumented.

File tom/State

class tom.State
inherits

Behaviour supers:All

variables

State isa;

Our class. The ‘State’ class is an instance of the State meta-class. The same is true for every
other class.

private int asi;

Information used, in cunning ways, by the runtime.

methods

instance (id)
alloc;

Return a newly created instance of the receiving class. All values, apart from theisa will have been
initialized to their default value.

instance (id)
alloc int size;

Like plainalloc , but allocate space forsize bytes instead of the size of an instance.size is rounded
up if it is not large enough for an instance of the receiving class to fit.

int
instanceSize;

236

Chapter 8. Unittom

Return the size of the instances of this class. This may change due to dynamic loading if no instance
has yet been created.

boolean
classp;

ReturnTRUE, since we’re a class object.

boolean
coding-permanent-object-p;

ReturnYES. This should not be changed; this method is used in situations where it is not known
whether the object is a class or not. In other situations, where it is known to be a class, this method is
not invoked as it is known to returnYES.

boolean
dump_simple_p;

ReturnYES.

class (id)
kind;

Return the class of the receiving object, i.e. the value ofisa .

ByteString

name;

Return the name of this class.

int (n)
num_instances;

Return the number of currently live direct instances of this class, non-transitively.

Unit (unit)
unit

post
unit != nil;

Return the unit of this class. The postcondition states that such a unit must exit.

instance (id)
new;

Return a newly created and initialized instance of the receiving class.

OutputStream

write OutputStream s;

237

Chapter 8. Unittom

Write a description of this class object to the streams .

instance tom.State
inherits

Behaviour supers:All

variables

class (id) isa;

Our class.

private int asi;

Information used, in cunning ways, by the runtime.

methods

boolean
classp;

ReturnFALSE, as we’re an instance, and not a class.

protected void
dump MutableKeyed done

indent MutableByteString prefix
simple boolean allow_simple

level int level
to OutputStream s;

Hard worker fordump.

id
init;

Designated initializer. Does nothing.

class (id)
kind;

Return the class of the receiving object.

void
set_kind class (State) a_class;

Change the class of the receiving object (i.e., theisa) into thea_class . Currently both the original
and the new class must carry exactly the same state. Looser restrictions could be implemented...

OutputStream

write OutputStream s;

238

Chapter 8. Unittom

Write the class and address of the receiving object to the streams .

OutputStream

writeFields OutputStream s;

Subsidiary forwrite to allow subclasses to write their fields to the streams . The default implemen-
tation does nothing.

void
dealloc;

Invoked by the garbage collector when an object has become garbage. Some important notes apply to
this method:

Do not message any other objects from within this method as they might have become garbage too.

Since class objects can not become garbage, it is safe to message class objects.

When overriding this method, it is not necessary to invokeState ’s implementation.

void
gc_mark_elements;

This method is invoked by the garbage collector for instances which employ pointer typed instance
variables, to have the receiving object mark the elements it references through said pointers. The
default implementation marks the object referencing variables.

class tom.Recyclable
Recyclable is the class meant to help in cases where normal garbage collection provides suboptimal
performance. It allows (but it does NOT require) manual object deallocation. To use, a simple call to
[Recyclable recycle] frees the object. Note that there is no error checking, and calling methods from
a recycled object results in an undefined behaviour.

Note that recycling is not mandatory. Unrecycled objects that are not needed any longer are freed in
the normal GC passes. It is therefore not a good idea to spend too much effort (both development and
runtime) on locating the objects that should be recycled - it is then more efficient to just rely on GC,
and it is also less bug-prone.

Also note that not all the classes should be Recyclable - it is reserved for the exceptional cases, it may
cause memory wastage, and in presence of generational GC, it may actually reduce performance.

inherits

State supers:State

variables

MutableObjectArray recycle_bin;

TheArray with the recycled objects of this class.

239

Chapter 8. Unittom

methods

void
load Indexed args;

Initialise therecycle_bin .

instance (id)
alloc;

Override on [State alloc], this method tries to reuse a recycled object before allocating a fresh one.

instance tom.Recyclable
methods

void
recycle;

Recycle the receiving object, allowing its reuse. Since this will not zero out the memory reserved for
the object (or uninitialize it in any other way, it might be expedient (but not mandatory) to zero out
the pointers from the object, so that GC can catch the referenced memory.

File tom/StreamBuffer

class tom.BufferedStream
inherits

State supers:StreamStream , InputOutputStream , Conditions

variables

const DEFAULT_BUFFER_SIZE = 8192;

The default value of the default size for the buffers of our instances.

static int default_buffer_size;

The default size for the buffers of our instances. If anyone sets this to a negative number, s/he
should be ni’d.

methods

void
load MutableArray arguments;

Undocumented.

240

Chapter 8. Unittom

instance tom.BufferedStream
variables

MutableByteArray buffer;

The buffer we use.

int num;

The number of elements in thebuffer .

int next;

The index of the first character not yet handled (i.e. read or written).

methods

id
init Stream s;

Initialize the newly allocated instance to buffer the streams with a buffer sized thedefault_buffer_size .

id
init Stream s

bufferSize int cap;

Designated initializer. Initialize the newly allocated instance to buffer the streams with a buffer sized
cap .

int
peek;

Return the value of the next byte to be returned byread , or -1 upon an error or end-of-file. This does
not actually read the byte.

void
unget byte b;

Stuff the byteb back (sort-of) into the stream. It will be the next byte to be read.

id
flushOutput;

Flush any bytes buffered to the stream this instance is buffering.

void
write byte b;

Write the byteb, raising astream-error on error.

int

241

Chapter 8. Unittom

write byte b;

Write the byteb, returning 1 upon success.

int
writeBytes int length

from pointer address;

Write to this stream thelength bytes residing in memory ataddress .

byte
read;

Return the next byte, raising astream-eos upon an error or end-of-file.

int
read;

Return the value of the next byte read, or -1 upon an error or end-of-file.

int (num_read)
readRange (int, int) (start, length)

into MutableByteArray destination;

Read at mostlength bytes into thedestination , writing them fromstart . Return the number of
bytes actually read.

protected int
readBuffer;

Fill the buffer by reading more bytes from thestream . Return the number of bytes read.

protected int
writeBuffer;

Write any bytes needing to be output to thestream . Return the number of bytes written.

File tom/String

class tom.String
inherits

State supers:Indexed , Comparable

instance tom.String
methods

242

Chapter 8. Unittom

deferred redeclare String

frozen;

We’ll return aString when frozen.

boolean
dump_simple_p;

ReturnYES.

OutputStream

dump_simple OutputStream s;

Print the receiving string, quoted.

deferred redeclare boolean
equal String other;

Compare the receivingString with the otherString .

deferred boolean
equalByteString ByteString other;

Compare the receivingString with the otherByteString .

deferred boolean
equalCharString CharString other;

Compare the receivingString with the otherCharString .

deferred boolean
equalUniqueString UniqueString other;

Compare the receivingString with the otherUniqueString .

boolean
equalModuloCase String other;

Compare the receivingString with the otherString , ignoring case differences.

int
compare id other;

Compare the receivingString with the other.

(int, int)
rangeOfString String string

range: (int, int) (start, len) = (0, -1);

243

Chapter 8. Unittom

Return the range of the occurrence of thestring in the receiving string. Return a negative length in
case it could not be found. The optionalstart andlength can be specified to restrict the searching
within the receiving string.

MutableArray

componentsSeparatedBy char c
limit: int limit = -1

excludeEmpty: boolean excl = NO
substringSelector: selector sel = selector (String substring (int, int));

Return a (mutable)Array of strings, taken from the receiving string by splitting it at characters with
the indicatedchar value. Thus, splitting ‘/usr/tmp’ at each ‘/’ returns an array holding the empty
string, ‘usr’, and ‘tmp’.

The optional argumentlimit specifies the maximum number of items in which the caller is inter-
ested, or -1 for all items. For example, if ‘/usr/foo/bar’ is split on ‘/’ in 3 items, the array returned
contains ‘’, ‘usr’, and ‘foo/bar’.

The optional argumentexcl , if YES specifies that zero-length substrings are not to be included in
the result. Thus, splitting ‘/aap/noot/mies/wim’ in 3 items, ignoring empty items, returns an array
containing ‘aap’, ‘noot’, and ‘mies/wim’.

The optional selectorsel specifies the method to be called to extract the substrings from the receiving
string. The default selector is"r_substring_(ii)" . To retrieve mutable substrings, the selector
"r_mutableSubstring_(ii)" could be used.

deferred MutableString

mutableSubstring (int, int) (start, len)
pre

start >= 0 && len >= -1;

Return aMutableString holding the characters from the receivingString in the (clipped) range
(start , len).

deferred String

substring (int, int) (start, len)
pre

start >= 0 && len >= -1;

Return a constantString holding the characters from the receivingString in the (clipped) range
(start , len).

deferred UniqueString

uniqueString;

Return a unique version of the receiving string. Do not use this method to create unique strings; use
[UniqueString with my_string] instead. (This method only creates strings which think they
are unique; theUniqueString class ensures they actually are.)

id

244

Chapter 8. Unittom

downcase;

Undocumented.

id
upcase;

Undocumented.

double (value)
doubleValue;

Return the double value at the start of the string.

(int, boolean, int) (value, full_range, actual_length)
integerValue (int, int) (start, len)
defaultBase: int base = 10

allowSign: boolean signs = YES
allowCBases: boolean c_bases = YES

baseSeparator: byte base_separator = ’_’
decimalBase: boolean decimal_base = YES;

Convert the number contained in the receiving string from indexstart , running forlen bytes (which
-1 for unlimited length).

The value returned is a tuple (extracted value, occupied full range, actual length). If the actual length
is 0, the extracted number will be 0.

Thebase defaults to 10, but can be any number. If it is larger than 10, alpha characters encountered
have the value of 11 + the offset from the alpha character to the start of its range. Thus, ‘a’ is 10, ‘z’
is 35.

Iff signs , a leading ‘+’ or ‘-’ sign is accepted.

Iff c_bases , C-style base indicators may be used: a number starting with a ‘0’ denotes an octal
number; a number starting with ‘0x’ or ‘0X’ is a hexadecimal number.

Iff the base_separator is not 0, a number can be prefixed with a base indication followed by the
base separator to specify the base of the actual number to follow. The base is read using the a decimal
base , unlessdecimal_base is FALSE, in which case the base is read in the defaultbase . Thus,
‘10_10’, with ‘_’ as a base separator, returnsbase if decimal_base is FALSE, and 10 if it was
TRUE.

int
intValue;

Simple front-end forintegerValue (with default arguments).

int
unsignedIntValue;

245

Chapter 8. Unittom

Simple front-end forintegerValue , similar to intValue , but not allowing a negative value. For a
negative value entered (due tointegerValue not doing overflow checking), 0 is returned.

boolean
isAlpha char c;

Return TRUE iff the characterc denotes a letter.

boolean
isDigit char c;

ReturnTRUEiff the characterc is a digit.

boolean
isLower char c;

ReturnTRUEiff the characterc is in lower-case.

boolean
isPunct char c;

ReturnTRUEiff the characterc is a punctuation character.

boolean
isSpace char c;

ReturnTRUEiff the characterc is a space character.

boolean
isUpper char c;

ReturnTRUEiff the characterc is in upper-case.

char
toLower char c;

Undocumented.

char
toTitle char c;

Undocumented.

char
toUpper char c;

Undocumented.

int
digitValue char c;

246

Chapter 8. Unittom

Undocumented.

int
alphaValue char c;

Undocumented.

id
stringByDecoding String encoding_name;

Return a string by decoding it assuming it was encoded using the encoding named byencod-

ing_name . The default implementation simply returnsself .

File tom/StringStream

class tom.StringStream
A StringStream is sort-of an enumerator on aString , with a InputStream interface.

inherits

State supers:State , InputStream

methods

instance (id)
with String string;

Return a new stream on thestring .

instance tom.StringStream
variables

String string;

TheString we’re streaming.

int next;

The index of the next byte to read.

methods

protected id
init String s;

Designated initializer.

247

Chapter 8. Unittom

byte
read;

Undocumented.

int
read;

Undocumented.

int
readRange (int, int) (start, num)

into MutableByteArray buffer;

Read the range(start, num) from the string into thebuffer .

File tom/Thread

class tom.Thread
TheThread class provides an abstraction to the multi-threading facilities provided by the underlying
operating system.

A new thread is started by theperformInThread with method provided by the instanceAll . The
value returned by that method is theThread object of the newly created thread.

Every thread has an id. The id of the current thread is available from theThread class ascur-

rent_id . The main thread (which every program has, even when running single-threaded) has id 0.
Due to the differences in target implementations, exiting the main thread, by invoking thatThread ’s
exit method, is not guaranteed not to exit the program.

Multi-threading need not be available on all TOM targets. Thefunctioning method returnsFALSE

on those targets on which multi-threading is not available. However, a TOM programmer can assume
multi-threading to always be available.

inherits

State supers:State

variables

static MutableEqSet threads;

The currently existing threads.

local static public instance (id) current;

The current thread.

248

Chapter 8. Unittom

local static public int current_id;

The id of the current thread.

methods

boolean
functioning;

ReturnTRUEiff we can run multiple threads on this target.

Set

threads;

Return the currently existing threads.

instance tom.Thread
variables

public int thread_id;

The TOM thread id of this thread.

methods

void
exit int rc

pre
self == [Thread current];

Exit the receiving thread, which must be the current thread.

protected id (self)
init int th_id;

Designated initializer.

File tom/Trie

class tom.Trie
TheTrie is a class providing the mechanism to store information in a trie onchar strings. It does
not by itself store any information, subclasses should be created to hold the information. TheTrie is
accompanied by its subclassObjectTrie which can store objects in a trie.

inherits

State supers:State , Constants

249

Chapter 8. Unittom

instance tom.Trie
variables

int start;

The offset to the first element innext , i.e. the element with numeric valuestart resides at
index 0 innext .

int beyond;

The value of the first element beyond the last element innext .

Any next;

If start == beyond , this is the suffixString which leads up to the value this node holds (if
any). Otherwise,start > beyond and this is aMutableObjectArray pointing to the next
nodes, and which is to be indexed with offsetstart .

methods

deferred boolean
isEmpty;

ReturnYES iff we can hold a value, i.e. if we do not yet hold a value.

protected id
createNode String str

start int s
end int e

options int options;

Create the node for that part of the stringstr starting ats , and ending ate. TheTRIE_LOOKUP_PREFIX

option is ignored. If this node already exists, it is returned.

When theoptions includeTRIE_FOLD_CASE, thestr is inserted in lower case.

protected id
findNode String str

start int s
end int e

options int options;

Find the node for that part of the stringstr starting ats , and ending ate. Iff a prefix match is desired,
the node returned is the longest prefix match.

protected void
pushSuffix int options;

Push our suffix one node down.

OutputStream

250

Chapter 8. Unittom

write OutputStream s;

Undocumented.

deferred OutputStream

writeValue OutputStream s;

Undocumented.

class tom.ObjectTrie
An ObjectTrie is aTrie which can hold an object.

inherits

State supers:Trie

instance tom.ObjectTrie
variables

public mutable Any value;

Our value.

methods

boolean
isEmpty;

Undocumented.

void
pushSuffix int options;

Move our value with the suffix.

Any

at String key
options int options;

Undocumented.

void
set All object

at String key
options int options;

Undocumented.

OutputStream

251

Chapter 8. Unittom

writeValue OutputStream s;

Undocumented.

Any

at String key;

Undocumented.

void
set All object

at String key;

Undocumented.

File tom/TypeDescription

class tom.TypeDescription
inherits

State supers:State

variables

static MutablePointerDictionary descriptions;

A container holding the mapping fromstruct trtd_selector_args to a TypeDescrip-

tion instance.

methods

instance (id) (result)
for pointer args;

Designated allocator, using a cache.

instance tom.TypeDescription
variables

public pointer types_description;

The internal runtime structure to the type description.

methods

boolean
equal id other;

252

Chapter 8. Unittom

Undocumented.

protected id (self)
init pointer args;

Designated initializer.

int
length;

Return the number of elements.

int
component int n;

Describe the element atn, indexed 0. This returns one of theTYPEDESC_* Constants .

OutputStream

writeFields OutputStream s;

Describe the component types.

File tom/Unicoding

class tom.Unicoding
TheUnicoding class object maintains information on theUnicode character coding.

inherits

Behaviour supers:All

variables

static ByteArray is_digit;

Bitmap for digit predicate.

static ByteArray is_letter;

Bitmap for letter predicate.

static ByteArray is_lower;

Bitmap for lower predicate.

static ByteArray is_punct;

Bitmap for punctuation predicate.

253

Chapter 8. Unittom

static ByteArray is_space;

Bitmap for space predicate.

static ByteArray is_upper;

Bitmap for upper predicate.

methods

protected ByteArray

loadPredicateSet String predicate
alternative selector alt_sel;

Load and return the predicate set for thepredicate on Unicode characters. If it can not be located,
thealt_sel is used to extract part of the information needed from theUSASCIIEncoding .

boolean
isAlpha char c;

Undocumented.

boolean
isDigit char c;

ReturnTRUEiff the characterc is a digit according to the encoding of the receiving string.

boolean
isLower char c;

Undocumented.

boolean
isPunct char c;

Undocumented.

boolean
isSpace char c;

Undocumented.

boolean
isUpper char c;

Undocumented.

char
toLower char c;

Undocumented.

254

Chapter 8. Unittom

char
toTitle char c;

Undocumented.

char
toUpper char c;

Undocumented.

int
digitValue char c;

Undocumented.

int
alphaValue char c;

Undocumented.

instance tom.Unicoding
inherits

Behaviour supers:All

File tom/Unit

class tom.Unit
inherits

State supers:State

variables

static MutableDictionary units;

All units known.

methods

instance (id)
named String name;

Return theUnit with thename, or nil if said unit does not currently exist.

protected void
fillUnits

255

Chapter 8. Unittom

pre
!units;

Create theunits dictionary and fill it with the currently known units.

Mapped

units;

Return the collection of units, keyed on their name.

instance tom.Unit
variables

public String name;

The name of this unit.

Dictionary classes;

The classes in this unit, keyed on their unqualified name.

methods

protected id (self)
initWithName String n

classes Dictionary c;

Designated initializer.

class (State)
classNamed String name;

Return the class with the given unqualifiedname, or nil if a class with that name does not exist in
this unit.

File tom/XL

class tom.XLTokens
The tokens available fromXL.

variables

const XLT_PAR_CLOSE = -9;

256

Chapter 8. Unittom

const XLT_PAR_OPEN = -8;

const XLT_DOUBLE = -7;

const XLT_FLOAT = -6;

const XLT_LONG = -5;

const XLT_INT = -4;

const XLT_SYMBOL = -3;

const XLT_EPSILON = -2;

const XLT_EOF = -1;

instance tom.XLTokens

class tom.XL
inherits

State supers:State , XLTokens

variables

const XLS_SYMBOL = 0;

Different states of the lexer state machine. Basically, these states are the states of reading a
floating point number, with a prefix for an integer, and an escape for a non-numeric input.

const XLS_SIGN = 1;

const XLS_INT = 2;

257

Chapter 8. Unittom

const XLS_DOT = 3;

const XLS_FRAC = 4;

const XLS_EXP_E = 5;

const XLS_EXP_SIGN = 6;

const XLS_EXP = 7;

instance tom.XL
variables

public InputStream stream;

The stream being lexed.

MutableByteString buffer;

The buffer used for building the text of the token.

public long int_value;

The most recent integer value retrieved.

public double float_value;

The most recent floating value retrieved.

public int current_line;

The current line.

public int token;

The current token.

int next_char;

The next character, i.e. the first character of the next token. This isXLT_EOFfor end of stream,
or XLT_EPSILON if this should be considered invalid (and read before starting the next token).

methods

258

Chapter 8. Unittom

id
initWithStream InputStream s;

Designated initializer.

int
intValue;

Return theint_value as an int. Any loss of bits is not remarked.

MutableString

matched;

Return the matched text.

int
nextToken;

Skip space and return the next token.

(pointer, int) (contents, length)
readBytes int expected_length

post
length == expected_length;

Skip whitespace, read a quoted string of bytes ("quoting \\like\\ \"this\"") and return it.
The length should match the expected length. Anything unexpected results in the return of aNULL

pointer.

File tom/archiving

class tom.StreamEncoder
inherits

State supers:Encoder

instance tom.StreamEncoder
variables

OutputStream stream;

The stream to which we write.

methods

id

259

Chapter 8. Unittom

initWithStream OutputStream s;

Undocumented.

protected State

replacementObjectFor State object;

Undocumented.

class tom.StreamDecoder
inherits

State supers:Decoder

instance tom.StreamDecoder
variables

InputStream stream;

The stream from which we read.

methods

id
initWithStream InputStream s;

Designated initializer.

class tom.BinaryStreamEncoder
inherits

State supers:StreamEncoder , BinaryEncoder

instance tom.BinaryStreamEncoder
methods

id
initWithStream OutputStream s;

Designated initializer.

void
finishEncodingRoot All object;

Finish the graph.

260

Chapter 8. Unittom

protected void
writeByte byte b;

Undocumented.

protected void
writeBytes (int, int) (start, length)

from ByteArray r;

Undocumented.

protected void
writeBytes (pointer, int) (address, length);

Undocumented.

class tom.BinaryStreamDecoder
inherits

State supers:StreamDecoder , BinaryDecoder , C

instance tom.BinaryStreamDecoder
methods

id
initWithStream InputStream s;

Designated initializer.

protected byte
readByte;

Undocumented.

protected void
readBytes int num

to pointer address;

Undocumented.

class tom.TextStreamEncoder
inherits

State supers:StreamEncoder

261

Chapter 8. Unittom

instance tom.TextStreamEncoder
methods

void
startEncodingRoot All object;

Output the top of the graph.

void
finishEncodingRoot All object;

Finish the graph.

class (State)
startEncoding State object;

Output the start of theobject .

void
finishEncoding State object;

Finish the output of theobject .

protected int
identityForClass class (State) a_class;

Identify this class on the outputstream , reporting its coding version.

void
encodeNilObject;

Output() , which is the notation for thenil object.

void
encodeReference int v;

Undocumented.

void
encode boolean v;

Undocumented.

void
encode byte v;

Undocumented.

void
encode char v;

262

Chapter 8. Unittom

Undocumented.

void
encode int v;

Undocumented.

void
encode long v;

Undocumented.

void
encode float v;

Undocumented.

void
encode double v;

Undocumented.

void
encode selector v;

Undocumented.

void
encodeBytes (int, int) (start, length)

from ByteArray r;

Undocumented.

class tom.TextStreamDecoder
This class is unimplemented.

inherits

State supers:StreamDecoder , XLTokens

instance tom.TextStreamDecoder
variables

XL lexer;

The lexer actually doing the reading from ourstream .

263

Chapter 8. Unittom

int token;

The current token, cached so we know when we are starting up, in which case the token is
XLT_EPSILON.

methods

id
initWithStream InputStream s;

Designated initializer of our super.

id
initWithLexer XL l;

Designated initializer.

Any

decode;

Undocumented.

byte
decode;

Undocumented.

boolean
decode;

Undocumented.

char
decode;

Undocumented.

int
decode;

Undocumented.

long
decode;

Undocumented.

float
decode;

Undocumented.

264

Chapter 8. Unittom

double
decode;

Undocumented.

(pointer, int) (contents, length)
decodeBytes;

Undocumented.

protected void
declareClass;

Undocumented.

protected int
nextToken;

Undocumented.

protected Any

readReference;

Undocumented.

protected void
skipList;

Read tokens up to and including the first top-level close parenthesis.

protected void
termSymbol String name;

Undocumented.

protected void
termToken int t;

Undocumented.

File tom/behaviours

class tom.Comparable
inherits

Behaviour supers:All

265

Chapter 8. Unittom

instance tom.Comparable
inherits

Behaviour supers:All

methods

deferred int
compare id other

pre
other != nil;

Return 0 if theother is considered equal by the receiving object. 1 if the receiver considers himself
larger, and -1 when smaller.

void
set_index int index

in_heap Heap h;

Functionality used byHeap to keep track of the index of its elements. Instances ofHeapElement

actually remember theindex . The default implementation just ignores it.

int
index_in_heap Heap heap;

Return the index of this element in theheap . Instances ofHeapElement can do this O(1) instead of
the O(n) ofComparable . On the other hand,Comparable can reside in any number ofHeap, and it
is only removal other than through root extraction which has become slower.

class tom.Container
A container is an object which gets to mark its elements after normal marking has been done. This
is very usable for unique string tables, DO proxies, etc; actually: all cases where an object having
become garbage implying it should be removed from its container, and the container itself is not
allowed to reference the object in a normal way (since then it would never become garbage).

In short, a the combo of garbage collector and container implements weak referencing.

instance tom.Container
methods

deferred void
gc_container_mark_elements;

The container mark method.

boolean
isContainer;

266

Chapter 8. Unittom

ReturnTRUEiff the receiving object is a container.

void
setIsContainer boolean container_p;

Set this object to be a container, or not, depending oncontainer_p .

void
setStackNotify boolean notify_p;

State that this container wants to be notified when it is conservatively pinpointed.

boolean
wantsStackNotify;

Does this container receive stack notifications?

void
gc_stack_notify;

Be notified of a reference from the stack, as request bysetStackNotify . Default implementation
does nothing.

class tom.Copying
TheCopying class defines an interface to copying objects.

Copying inherits fromState since class objects should not be copyable. Inheriting fromState

ensures that theCopying instance methods can not be inherited by class objects.

inherits

State supers:State

instance tom.Copying
methods

id
copy;

Return a shallow copy of the receiving object.

id
deepCopy;

Return a deep copy of the receiving object.

id
deepen int level

mutably: boolean mutable_p = NO;

267

Chapter 8. Unittom

Intended to be called on a recently acquired copy of an object,deepen mutable: deepens the copy.
Iff the optionalmutable_p is TRUE, the deepened copies will also be mutable. The default imple-
mentation does nothing.

The level should be less than 0 for an infinite deepen.length == 0 is a nop; iff length > 0 ,
every element of the copy is copied and deepened withlevel - 1 .

The value returned isself .

id
initCopy;

Initialize the receiver just after it has been created as the result of acopy . The default implementation
does nothing but returnself .

id
initAsCopyOf All other;

Initialize the receiver just after it has been created as the result of amutableCopy of the other

object. The default implementation does nothing but returningself .

Any

mutableCopy;

Return a mutable (shallow) copy of the receiving object. For objects which do not discern between
mutable and immutable variants, the default implementation returns[self copy] .

Mutable copying asks the receiving object for itsmutableCopyClass . If this class isisa , self is
sent acopy . Otherwise, an instance of the class is allocated and sent aninitAsCopyOf .

class (State)
mutableCopyClass;

Return the class of the object resulting from a mutable copy of this object. The default implementation
simply returnsisa .

class tom.Enumerable
inherits

State supers:State

methods

instance (id)
withEnumerable Enumerable other;

Invokeself ’s withEnumerator with anenumerator from theother .

instance (id)
withEnumerator Enumerator e;

268

Chapter 8. Unittom

Return a newly allocated instance of the receiving class, filled with the elements from theEnumera-

tor e .

instance tom.Enumerable
methods

deferred protected id
initWithEnumerator Enumerator e;

Initialize with the elements from theEnumerator e .

deferred Enumerator

enumerator;

Return anEnumerator on the receiving object.

class tom.Enumerator

instance tom.Enumerator
methods

deferred (boolean, Any)
next;

Return a tuple containing the next object, preceded by a boolean value indicating whether the end of
the enumerable has been reached; if the boolean isTRUE, the end has not yet been reached.

(boolean, byte)
next;

Default implementations for direct value retrieving enumerators.

(boolean, char)
next;

Undocumented.

(boolean, int)
next;

Undocumented.

(boolean, long)
next;

Undocumented.

269

Chapter 8. Unittom

(boolean, float)
next;

Undocumented.

(boolean, double)
next;

Undocumented.

(boolean, pointer)
next;

Undocumented.

class tom.MapEnumerator
inherits

State supers:Enumerator

instance tom.MapEnumerator
methods

deferred (boolean, Any, Any)
next;

MapEnumerator allows iteration over both keys and values.

File tom/coding

class tom.ObjectCoder
ObjectCoder is a workaround for circular hierarchy - it is only a placeholder for methods called from
State (Coding) .

inherits

State supers:Conditions , Constants

methods

void
encodeObject State obj

usingCoder Encoder coder;

Undocumented.

270

Chapter 8. Unittom

void
initObject State obj
usingCoder Decoder coder;

Undocumented.

instance tom.ObjectCoder

class tom.State (Coding)
This extension ofState defines the functionality for encoding and decoding objects. To be able to en-
code an object, it must at least properly implementencodeUsingCoder . Similarly, to be decodable,
it must implementinitWithCoder .

The unit of archiving is a class, not an extension. This means that if an extension adds state information
which needs to be archived (or encoded onto atoo.PortCoder), the extension must re-implement
the coding methods.

variables

public mutable boolean encode_simply;

Classes that want to be encoded in the obvious way, by writing the values of their variables, set
this to TRUE.

methods

int
version;

Return the current version of the classcls . This is the version that will be written when coding
instances of this class or a subclass thereof. The default version is 0.

A version should only be returned ifself is identical to the class containing the method definition, i.e.
the method is not inherited. Otherwise, the two are unequal, and the version of a subclass is requested
that does not implement this method, and hence should return version 0.

boolean
never-encode-simply-p;

ReturnYES if encode_simply of all classes involved in the receiving object will always return
FALSE. Coding is sped up tremendously in that case. The defaultisNO, to not speed up and allow for
passive encoding.

boolean
persistent-coding-p;

ReturnYES.

271

Chapter 8. Unittom

instance tom.State (Coding)
methods

class (State)
classForCoder Encoder coder;

Return the class to be put in the coded stream as the class of this object. The default implementation
simply returnsisa , which is the receiving object’s class.

void
encodeUsingCoder Encoder coder;

Encode the receiving object to the targetcoder . Every object should first invoke this method of all
its direct superclasses before encoding its instance variables, but only ifhasBeenCodedFor for the
class implementing the method returnsFALSE. For classes that setencode_simply to TRUE, this
method will use introspection to encode the class variables.

boolean
never-encode-simply-p;

ReturnYES if encode_simply of all classes involved in the receiving object will always return
FALSE. Coding is sped up tremendously in that case.

boolean
persistent-coding-p;

ReturnNO.

Any (self)
replacementForStreamCoder StreamEncoder coder;

Return the object to be encoded on theStreamEncoder coder (i.e. archived or wired) instead of the
receiving object. The default implementation simply returnsself .

void
initWithCoder Decoder coder;

Initialize the receiving object from thecoder . After verifying that this method implementation has
not yet been invoked (usinghasBeenCodedFor), this method should invoke the implementation of
this method by the superclasses, followed the fields that were encoded by this class. Decoding must
be done in the same order as encoding. Default implementation onState will use introspection to
init the objects that requested it by settingencode_simply on their class to TRUE.

Note that this method returnsvoid . An object can change the actual object returned from decoding
by implementingawakeAfterUsingCoder .

id (self)
awakeAfterUsingCoder Decoder coder;

272

Chapter 8. Unittom

Return the object to be the object retrieved from decoding instead of the receiving object. The default
implementation returnsself .

Objects can use this method to return their administered counterpart, likeUniqueString objects do.

Note that if an object is referenced during its decoding (i.e. object A is referenced by an object B
which is decoded because B is (indirectly) referenced by A), it must not return a different object from
awakeAfterUsingCoder . If it does, acoding-condition is raised.

class tom.Coder
inherits

State supers:State , Conditions

methods

int
version;

The version of the coding scheme used. The current version is 0.

instance tom.Coder
methods

void
willCodeVariable String name

forObject All object
inExtension Extension x;

Notify the coder object about the variable being coded. This allows primitive form of state versioning
control. Note that there are no guarantees that every class will send this notification while encoding
itself.

void
willCodeExtension Extension x

forObject All object;

Notify the coder of the extension being coded. There are no guarantees that every class will send this
notification.

void
doneCodingExtension Extension x;

Notify the coder that the coding of the extension x is finished.

273

Chapter 8. Unittom

class tom.BinaryCoder
TheBinaryCoder classesBinaryEncoder andBinaryDecoder can archive dearchive a graph of
objects in a binary form onto/from a stream. The format is rather simple: Every item stored is preceded
by a tag byte indicating what the next item is. There are a few secondary tags to introduce classes, etc.

Every instance or class written is internally numbered in the order the objects are written. References
to these objects are encoded in the number of bytes necessary for the number of currently known
objects. The secondary tags2 and4 switch to 2 and 4 byte reference encoding, respectively.

Thenil object is denoted by the0 tag.

Selectors are encoded as a tagS, followed by the assigned selector number (which is anint , starting
at 1) and the correspondingSelector object. Selectors already encoded are denoted by a tags and
the int selector number. The invalid selector (the default value ofselector typed variables, also
available as[Runtime nullSelector]) is identified by the tags followed by 0 as the selector
number.

inherits

State supers:Coder

instance tom.BinaryCoder
variables

int reference_size;

The number of bytes issued for a reference. This starts with 1 (a byte), and can become 2 (a char)
or 4 (an int).

methods

id
init;

Undocumented.

class tom.Encoder
inherits

State supers:Coder

instance tom.Encoder
variables

274

Chapter 8. Unittom

MutableEqDictionary tmp_objects_done;

Keyed on the objects already encoded, the value is the identifier (which is anIntNumber) used
for this object. This dict only contains temporary objects, i.e. objects that can be forgotten about
after eachencodeRoot .

MutableEqDictionary perm_objects_done;

Similar, the non-temporary objects. This includes class objects andSelector objects.

MutableEqSet objects_skipped;

The set of conditional objects that were skipped.

MutableEqSet coded_classes;

The classes which, for the current object, have already done their part in the coding.

int last_object_id;

The most recently issued object identifier.

methods

void
encodeRoot State object;

The main entryEncoder method: encode theobject and the whole object graph implied by it. This
method is not reentrant.

id
init;

Designated initializer.

boolean
hasBeenCodedFor class (State) the_class;

ReturnNOif the object currently being encoded on this coder has not yet been encoded forthe_class .
ReturnYESotherwise. While coding an object, only the first invocation for a certainthe_class will
returnYES; subsequent invocations will returnNO.

void
encode State object;

Encode theobject , unconditionally.

void
encodeConditionally State object;

275

Chapter 8. Unittom

Encode theobject , but only if it already is part of the output graph. If this is not the case,nil is
encoded, and if later on in the coding process the object previously encoded as nil is encountered
(unconditionally), aprogram-condition will be raised to flag the inconsistency.

deferred void
encode boolean v;

Encode theboolean v .

deferred void
encode byte v;

Encode thebyte v .

deferred void
encode char v;

Encode thechar v .

deferred void
encode int v;

Encode theint v .

deferred void
encode long v;

Encode thelong v .

deferred void
encode float v;

Encode thefloat v .

deferred void
encode double v;

Encode thedouble v .

deferred void
encode selector v;

Encode theselector v.

deferred void
encodeBytes (int, int) (start, length)

from ByteArray r
pre

start >= 0 && length >= -1;

276

Chapter 8. Unittom

Encode the bytes in the range(start, length) from the arrayr .

deferred void
encodeBytes (pointer, int) (address, length);

Encode thelength bytes of which the first one resides at theaddress .

deferred protected State

replacementObjectFor State object;

Return the object to be encoded to this coder instead of theobject . This method is implemented by
subclasses to retrieve the actual object from theobject itself, for instance by asking for itreplace-

mentForStreamCoder or replacementForPortCoder .

deferred protected void
encodeNilObject;

Encode thenil reference.

deferred protected void
encodeReference int v;

Encode a reference to the object known asv .

protected int
identityFor All object;

Return the identity to be used for the non-classobject . This returns the next value oflast_object_id .

protected int
identityForClass class (State) a_class;

Return the identity to be used for the class objecta_class . This returns the next value oflast_object_id .

class (State)
startEncoding State object;

Undocumented.

protected void
finishEncoding All object;

Invoked when theobject has been encoded. Default does nothing.

protected void
startEncodingRoot All object;

Invoked when coding starts with the rootobject . Default does nothing.

protected void
finishEncodingRoot All object;

277

Chapter 8. Unittom

Invoked when coding the rootobject has finished. Default does nothing.

class tom.BinaryEncoder
inherits

State supers:BinaryCoder , Encoder

instance tom.BinaryEncoder
variables

MutableDictionary selectors;

The selector dictionary, fromSelector to IntNumber .

methods

id
init;

Designated initializer.

class (State)
startEncoding State object;

Undocumented.

protected void
finishEncoding All object;

Invoked when theobject has been encoded. Emit a close paren.

protected void
updateReferenceSize;

Undocumented.

protected int
identityFor All object;

Undocumented.

protected int
identityForClass class (State) a_class;

Identify this class on the outputstream , reporting its coding version.

protected void
encodeNilObject;

278

Chapter 8. Unittom

Undocumented.

protected void
encodeReference int v;

Undocumented.

void
encode boolean v;

Undocumented.

void
encode byte v;

Undocumented.

void
encode char v;

Undocumented.

void
encode int v;

Undocumented.

void
encode long v;

Undocumented.

void
encode float v;

Undocumented.

void
encode double v;

Undocumented.

void
encode selector v;

Undocumented.

void
encodeBytes (pointer, int) (address, length);

Undocumented.

279

Chapter 8. Unittom

void
encodeBytes (int, int) (start, length)

from ByteArray r;

Undocumented.

protected void
writeReference int r

pre
reference_size == 1 || reference_size == 2 || reference_size == 4;

Undocumented.

deferred protected void
writeByte byte b;

Undocumented.

deferred protected void
writeBytes (int, int) (start, length)

from ByteArray r;

Undocumented.

deferred protected void
writeBytes (pointer, int) (address, length);

Undocumented.

protected void
writeChar char c;

Undocumented.

protected void
writeInt int i;

Undocumented.

protected void
writeLong long l;

Undocumented.

class tom.Decoder
TheDecoder class defines the interface to all decoder classes, be it binary or textual, stream or port
base.

inherits

280

Chapter 8. Unittom

State supers:Coder

instance tom.Decoder
variables

MutableIntDictionary tmp_objects_done;

Objects, indexed on their identity, as retrieved from this coder.

MutableIntDictionary perm_objects_done;

IntegerRangeSet objects_referenced;

The identity of the objects that have been referenced while being decoded.

MutableEqDictionary class_versions;

Mapping from a class to the decoding version of that class.

MutableEqSet coded_classes;

The classes which, for the current object, have already done their part in the coding.

methods

id
init;

Designated initializer.

Any

decodeRoot;

This is the entry point for the user of this decoder. The user invokesdecodeRoot to retrieve an object,
plus its underlying graph, from this decoder. The object is returned.

boolean
hasBeenCodedFor class (State) the_class;

ReturnNOif the object currently being decoded on this coder has not yet been decoded forthe_class .
ReturnYESotherwise. While coding an object, only the first invocation for a certainthe_class will
returnYES; subsequent invocations will returnNO.

int
versionOfClass class (State) cls

pre
class_versions[cls] != nil;

281

Chapter 8. Unittom

Return the version of the classcls as encountered by this coder. The version can only be retrieved of
classes already encountered curing the decoding process.

deferred Any

decode;

Retrieve an object from this decoder and return it.

deferred boolean
decode;

Undocumented.

deferred byte
decode;

Undocumented.

deferred char
decode;

Undocumented.

deferred int
decode;

Undocumented.

deferred long
decode;

Undocumented.

deferred float
decode;

Undocumented.

deferred double
decode;

Undocumented.

deferred selector
decode;

Undocumented.

deferred (pointer, int)
decodeBytes;

282

Chapter 8. Unittom

Decode a sequence of bytes from the coder to newly allocated memory space. Return the address and
the length.

deferred void
decodeBytes int num

to pointer address;

Decode thenumbytes from the coder to theaddress .

protected Any

decodeObject class (State) cls
as int ref;

Undocumented.

protected void
finishDecoding All o;

Invoked bydecodeObject as , after having invokedinitWithCoder , but beforeawakeAfterUs-

ingCoder . The default implementation does nothing.

protected Any

reference int i;

Return the object referenced as the numberi .

class tom.BinaryDecoder
TheBinaryDecoder is an abstract decoding class which can decode binary encoded objects. It serves
as the decoding engine for theBinaryStreamDecoder andtoo.PortDecoder .

inherits

State supers:BinaryCoder , Decoder , C

instance tom.BinaryDecoder
variables

MutableArray selectors;

The selectors encountered so far, indexed on their identity.

methods

id
init;

Designated initializer.

Any

283

Chapter 8. Unittom

decode;

Decode and return an object.

Any

decode byte b;

Decode and return an object, announced by the tagb.

boolean
decode;

Undocumented.

byte
decode;

Undocumented.

char
decode;

Undocumented.

int
decode;

Undocumented.

long
decode;

Undocumented.

float
decode;

Undocumented.

double
decode;

Undocumented.

selector (result)
decode;

Undocumented.

(pointer, int)
decodeBytes;

284

Chapter 8. Unittom

Undocumented.

void
decodeBytes int length

to pointer address;

Undocumented.

protected void
finishDecoding All o;

Invoked when the objecto has been decoded. Read a close paren.

protected byte
nextPrimary;

Return the next primary tag byte, handling secondary tags such as reference size changes and class
declarations.

If an unknown class is encountered, aunknown-class-condition is signaled. A handler may
return a replacement class to be used instead. Failure to do so will later on result in anil-receiver

condition or a failed precondition.

protected byte
nextPrimary byte expected;

Return the next primary tag byte, which must matchexpected . If it doesn’t, aprogram-condition

is raised.

protected int
readReference

pre
reference_size == 1 || reference_size == 2 || reference_size == 4;

Read an object reference from this decoder. Depending on thereference_size this read 1, 2, or 4
bytes.

protected Any

readReference;

Read an object reference from this decoder and return the object referenced. This raises acoding-

condition in case not a proper reference is encountered, or if the referenced object is unknown.

deferred protected byte
readByte;

Return the next singlebyte .

deferred protected void
readBytes int num

285

Chapter 8. Unittom

to pointer address;

Undocumented.

protected char
readChar;

Return the next two bytes as achar .

protected int
readInt;

Return the next four bytes as anint .

protected long
readLong;

Return the next 8 bytes as along .

File tom/collections

class tom.Collection
inherits

State supers:State , Conditions , Copying , Enumerable

instance tom.Collection
methods

boolean
dump_simple_p;

ReturnYES.

void
do Block block;

Evaluate theblock for each object element in thisCollection . Subclasses can provide a faster
implementation.

boolean
equal id other;

Two collections consider themselves equal if they are the same object or when their elements are
equal.

286

Chapter 8. Unittom

void
freeze;

Make the receiving collection immutable. This is irreversible. It is a no-op for immutable collections.

Collection

frozen;

Returnself if this is a non-mutableCollection . Otherwise, return a non-mutable collection with
the same contents.

Any

member All object;

Return the element contained in this collection, which isequal to theobject . The default imple-
mentation byCollection visits the elements using an enumerator.

Any

memq All object;

Like member, but the element is identified on reference equality.

deferred int
length;

Return the number of elements in thisCollection .

void
makeElementsPerform Invocation invocation;

Fire theinvocation at the elements contained in the receiving collection.

void
makeElementsPerform selector message;

Send the argumentlessmessage to the elements contained in the receiving collection.

void
makeElementsPerform selector message

with All argument;

Send themessage with the objectargument to the elements contained in the receiving collection.

boolean
mutable;

A Collection is not mutable.

void
passElementsTo Invocation inv;

287

Chapter 8. Unittom

Fire the invocation repeatedly, each time with the next object from the collection completing the
invocation.

OutputStream

write OutputStream s;

Undocumented.

class tom.MutableCollection
inherits

State supers:Collection

instance tom.MutableCollection
methods

deferred void
add All object;

Undocumented.

void
addElementsFrom Enumerable other;

Undocumented.

void
addElementsFromEnumerator Enumerator e;

Undocumented.

deferred void
empty;

Remove all elements from the receiving collection.

deferred void
freeze;

Forcefreeze to be undefined since each particular subclass must itself implement it.

id (self)
initWithEnumerator Enumerator e;

Initialize by feedingself the elements from theenumerator .

boolean
mutable;

288

Chapter 8. Unittom

A MutableCollection is mutable.

class tom.Keyed
A Keyed Collection stores elements on a key.

inherits

State supers:Collection

instance tom.Keyed
methods

deferred Any

at All key
pre

key != nil;

Undocumented.

deferred Enumerator

keyEnumerator;

Return an enumerator on the keys of this mapped collection.

Any

member All object;

Member for a Keyed collection can be implemented efficiently.

Any

memq All object;

Like member, but the element is identified on reference equality. This is a less-efficient abstract im-
plementation.

class tom.MutableKeyed
inherits

State supers:Keyed , MutableCollection

instance tom.MutableKeyed
methods

deferred void
add All object;

289

Chapter 8. Unittom

Add theobject .

deferred void
remove All object;

Remove theobject .

void
removeElementsFrom Collection c;

Remove all the objects contained in the collectionc .

void
removeElementsFromEnumerator Enumerator e;

Undocumented.

void
keepElementsFrom Collection c;

Remove all the objects not contained in the collectionc , i.e., change the receiving collection into the
result of intersectingself andc .

Keyed collections that can not handle losing elements while being enumerated must reimplement this.
There is no methodkeepElementsFromEnumerator because set intersection is not meaningful
with an arbitrary enumerator.

Indexed

allKeys;

All the keys in a convenient format.

class tom.Mapped
A Mapped Collection is aKeyed collection which stores (key, value) associations.

inherits

State supers:Keyed

instance tom.Mapped
methods

void
doKeys Block block;

Evaluate theblock for each key. Subclasses can provide a faster implementation.

deferred MapEnumerator

valueEnumerator;

290

Chapter 8. Unittom

Return aMapEnumerator on the values of thisMapped collection.

boolean
equal id other;

Check for equality, checking not only the values, but also the keys.

deferred Enumerator

keyEnumerator;

Return anEnumerator on the keys of thisMapped collection.

class tom.MutableMapped
inherits

State supers:Mapped, MutableKeyed

variables

const MAPPED_KEEP = 0;

Directives to guideaddPairsFrom .

const MAPPED_ERROR = 1;

const MAPPED_CLOBBER = 2;

instance tom.MutableMapped
methods

void
add All value;

Add a new pair, using thevalue as the value and the key.

deferred void
set All value

at All key
pre

key != nil && value != nil;

Undocumented.

void
addPairsFrom Mapped m

291

Chapter 8. Unittom

onContention: int action = MAPPED_KEEP;

Add pairs from anotherMapped collection. The optionalonContention parameter specifies whether
or not pairs which have contending keys should keep the value currently inself , overwrite (clobber)
the value currently inself with the value inm, or raise atype-condition Condition .

Indexed

allValues;

Return all values in anIndexed format.

class tom.Ordered
An Ordered Collection maintains its elements in a specific order, though the time complexity or
retrieving the nth object not necessarily independent of n.

inherits

State supers:Collection

instance tom.Ordered
methods

(int, int)
adjustRange (int, int) (start, len);

Adjust the range (start , len) to fit the length of the receivingIndexed collection.

Any

at int index
pre

index >= 0 && index < [self length];

Return the element atindex . If the receiving collection stores unboxed values, such as integers, the
value returned is the element boxed. Returns nil on index overflow (precondition should whine about
it, though - nil may only be returned if [self length] is bugged).

byte
at int index;

Return the byte value of the element atindex . If the receiving collection stores objects, thebyte-

Value of the element retrieved is actually returned.

char
at int index;

The following all follow thebasic typeat indexstanza.

int

292

Chapter 8. Unittom

at int index;

Undocumented.

long
at int index;

Undocumented.

float
at int index;

Undocumented.

double
at int index;

Undocumented.

int
indexOf All element;

Return the index of the firstelement , or -1 if it could not be found.

int
indexOfIdentical All element;

Return the index of the first identicalelement , or -1 if it could not be found.

class tom.MutableOrdered
inherits

State supers:Ordered , MutableCollection

instance tom.MutableOrdered
methods

deferred void
set All object

at int index;

Store theobject at index in the receiving collection.

deferred void
swap (int, int) (i, j);

Swap the elements at the indicesi andj .

293

Chapter 8. Unittom

void
reverse (int, int) (start, len);

Reverse the elements in the range starting atstart , with lengthlen .

void
reverse;

Reverse the entire collection.

deferred void
removeElementAt int index;

Remove the element atindex , decreasing by 1 the indices of the elements further in the collection.

void
removeElement All element;

Remove the first occurence ofelement .

void
removeIdenticalElement All element;

Remove the first occurence of the identicalelement .

class tom.Indexed
An Indexed Collection maintains an association between integer indices and the objects it con-
tains, with the promise that retrieving an object through the index is O(1) in time complexity.

inherits

State supers:Ordered

instance tom.Indexed
methods

void
do Block block;

Evaluate theblock for each object element in thisIndexed .

dynamic
elements;

Extract the elements from the receiving collection, as indicated by the return type. The number of
elements in the collection must match the number of expected elements.

dynamic

294

Chapter 8. Unittom

elements (int, int) (start, num);

Like elements , but extract only thenumelements starting at indexstart .

Enumerator

enumerator;

Return anEnumerator on thisIndexed .

boolean
equal id other;

A faster implementation than the one inherited fromCollection .

int
indexOf All element;

Return the index of the firstelement , or -1 if it could not be found.

int
indexOfIdentical All element;

Return the index of the first identicalelement , or -1 if it could not be found.

void
makeElementsPerform Invocation inv;

A faster implementation than the one inherited fromCollection , without using anEnumerator .

void
makeElementsPerform selector message;

Likewise.

void
makeElementsPerform selector message

with All argument;

Likewise.

void
passElementsTo Invocation inv;

Likewise.

class tom.MutableIndexed
inherits

State supers:Indexed , MutableOrdered

295

Chapter 8. Unittom

instance tom.MutableIndexed

class tom.IndexedEnumerator
The IndexedEnumerator enumerates anyIndexed collection, returning the elements boxed.

inherits

State supers:State , Enumerator

methods

instance (id)
with Indexed indexed;

Undocumented.

instance tom.IndexedEnumerator
variables

int next;

The index of the next element to be returned.

int num;

The index one beyond the last element to be returned.

Indexed indexed;

The actual indexed collection.

methods

id (self)
init Indexed a

start: int start = 0
length int length;

Designated initializer.

(boolean, Any)
next;

Undocumented.

(boolean, byte)
next;

296

Chapter 8. Unittom

All thesenext methods are not really necessary, as they are provided by theEnumerator behaviour.
However, binding them here directly greatly enhances speed and reduces memory requirements for
non-object indexeds, which now also do not need their own enumerator to obtain speed.

(boolean, char)
next;

Undocumented.

(boolean, int)
next;

Undocumented.

(boolean, long)
next;

Undocumented.

(boolean, float)
next;

Undocumented.

(boolean, double)
next;

Undocumented.

File tom/config

class tom.Constants (config)
variables

const TOM_RESOURCES = "/usr/local/lib/tom/charmaps/";

const TOM_PREFIX = "/usr/local/";

instance tom.Constants (config)

297

Chapter 8. Unittom

File tom/holes

class tom.Sink
Sink implements anOutputStream that is a black hole. It consumes all data that is written to it, and
has no value for printing.

inherits

State supers:State , OutputStream

instance tom.Sink
methods

void
close;

Undocumented.

void
write byte b;

Undocumented.

int
write byte b;

Undocumented.

int
writeRange (int, int) (start, length)

from ByteArray buffer;

Undocumented.

id
print boolean b;

Undocumented.

id
print byte b;

Undocumented.

id
print char c;

Undocumented.

298

Chapter 8. Unittom

id
print int i;

Undocumented.

id
print long l;

Undocumented.

id
print float f;

Undocumented.

id
print double d;

Undocumented.

id
print pointer addr;

Undocumented.

id
print dynamic x;

Undocumented.

File tom/numbers

class tom.ByteNumber
inherits

State supers:Number

instance tom.ByteNumber
variables

byte value;

methods

299

Chapter 8. Unittom

byte
byteValue;

Undocumented.

char
charValue;

Undocumented.

double
doubleValue;

Undocumented.

float
floatValue;

Undocumented.

int
intValue;

Undocumented.

long
longValue;

Undocumented.

int
compare Number n;

Undocumented.

int
compare byte v;

Undocumented.

int
compare char v;

Undocumented.

int
compare int v;

Undocumented.

int

300

Chapter 8. Unittom

compare long v;

Undocumented.

int
compare float v;

Undocumented.

int
compare double v;

Undocumented.

id
init byte value;

Undocumented.

id
init char value;

Undocumented.

id
init int value;

Undocumented.

id
init long value;

Undocumented.

id
init float value;

Undocumented.

id
init double value;

Undocumented.

void
encodeUsingCoder Encoder coder;

Undocumented.

void
initWithCoder Decoder coder;

301

Chapter 8. Unittom

Undocumented.

OutputStream

write OutputStream s;

Undocumented.

class tom.CharNumber
inherits

State supers:Number

instance tom.CharNumber
variables

char value;

methods

byte
byteValue;

Undocumented.

char
charValue;

Undocumented.

double
doubleValue;

Undocumented.

float
floatValue;

Undocumented.

int
intValue;

Undocumented.

long
longValue;

302

Chapter 8. Unittom

Undocumented.

int
compare Number n;

Undocumented.

int
compare byte v;

Undocumented.

int
compare char v;

Undocumented.

int
compare int v;

Undocumented.

int
compare long v;

Undocumented.

int
compare float v;

Undocumented.

int
compare double v;

Undocumented.

id
init byte value;

Undocumented.

id
init char value;

Undocumented.

id
init int value;

Undocumented.

303

Chapter 8. Unittom

id
init long value;

Undocumented.

id
init float value;

Undocumented.

id
init double value;

Undocumented.

void
encodeUsingCoder Encoder coder;

Undocumented.

void
initWithCoder Decoder coder;

Undocumented.

OutputStream

write OutputStream s;

Undocumented.

class tom.IntNumber
inherits

State supers:Number

instance tom.IntNumber
variables

int value;

methods

byte
byteValue;

Undocumented.

304

Chapter 8. Unittom

char
charValue;

Undocumented.

double
doubleValue;

Undocumented.

float
floatValue;

Undocumented.

int
intValue;

Undocumented.

long
longValue;

Undocumented.

int
compare Number n;

Undocumented.

int
compare byte v;

Undocumented.

int
compare char v;

Undocumented.

int
compare int v;

Undocumented.

int
compare long v;

Undocumented.

int

305

Chapter 8. Unittom

compare float v;

Undocumented.

int
compare double v;

Undocumented.

id
init byte value;

Undocumented.

id
init char value;

Undocumented.

id
init int value;

Undocumented.

id
init long value;

Undocumented.

id
init float value;

Undocumented.

id
init double value;

Undocumented.

void
encodeUsingCoder Encoder coder;

Undocumented.

void
initWithCoder Decoder coder;

Undocumented.

OutputStream

write OutputStream s;

306

Chapter 8. Unittom

Undocumented.

class tom.LongNumber
inherits

State supers:Number

instance tom.LongNumber
variables

long value;

methods

byte
byteValue;

Undocumented.

char
charValue;

Undocumented.

double
doubleValue;

Undocumented.

float
floatValue;

Undocumented.

int
intValue;

Undocumented.

long
longValue;

Undocumented.

int
compare Number n;

307

Chapter 8. Unittom

Undocumented.

int
compare byte v;

Undocumented.

int
compare char v;

Undocumented.

int
compare int v;

Undocumented.

int
compare long v;

Undocumented.

int
compare float v;

Undocumented.

int
compare double v;

Undocumented.

id
init byte value;

Undocumented.

id
init char value;

Undocumented.

id
init int value;

Undocumented.

id
init long value;

Undocumented.

308

Chapter 8. Unittom

id
init float value;

Undocumented.

id
init double value;

Undocumented.

void
encodeUsingCoder Encoder coder;

Undocumented.

void
initWithCoder Decoder coder;

Undocumented.

OutputStream

write OutputStream s;

Undocumented.

class tom.FloatNumber
inherits

State supers:Number

instance tom.FloatNumber
variables

float value;

methods

byte
byteValue;

Undocumented.

char
charValue;

Undocumented.

309

Chapter 8. Unittom

double
doubleValue;

Undocumented.

float
floatValue;

Undocumented.

int
intValue;

Undocumented.

long
longValue;

Undocumented.

int
compare Number n;

Undocumented.

int
compare byte v;

Undocumented.

int
compare char v;

Undocumented.

int
compare int v;

Undocumented.

int
compare long v;

Undocumented.

int
compare float v;

Undocumented.

int

310

Chapter 8. Unittom

compare double v;

Undocumented.

id
init byte value;

Undocumented.

id
init char value;

Undocumented.

id
init int value;

Undocumented.

id
init long value;

Undocumented.

id
init float value;

Undocumented.

id
init double value;

Undocumented.

void
encodeUsingCoder Encoder coder;

Undocumented.

void
initWithCoder Decoder coder;

Undocumented.

OutputStream

write OutputStream s;

Undocumented.

311

Chapter 8. Unittom

class tom.DoubleNumber
inherits

State supers:Number

instance tom.DoubleNumber
variables

double value;

methods

byte
byteValue;

Undocumented.

char
charValue;

Undocumented.

double
doubleValue;

Undocumented.

float
floatValue;

Undocumented.

int
intValue;

Undocumented.

long
longValue;

Undocumented.

int
compare Number n;

Undocumented.

312

Chapter 8. Unittom

int
compare byte v;

Undocumented.

int
compare char v;

Undocumented.

int
compare int v;

Undocumented.

int
compare long v;

Undocumented.

int
compare float v;

Undocumented.

int
compare double v;

Undocumented.

id
init byte value;

Undocumented.

id
init char value;

Undocumented.

id
init int value;

Undocumented.

id
init long value;

Undocumented.

id

313

Chapter 8. Unittom

init float value;

Undocumented.

id
init double value;

Undocumented.

void
encodeUsingCoder Encoder coder;

Undocumented.

void
initWithCoder Decoder coder;

Undocumented.

OutputStream

write OutputStream s;

Undocumented.

File tom/streams

class tom.Stream
inherits

State supers:Conditions

Behaviour supers:All

instance tom.Stream
inherits

State supers:Conditions

Behaviour supers:All

methods

deferred void
close;

Undocumented.

314

Chapter 8. Unittom

class tom.InputStream
inherits

State supers:Stream

instance tom.InputStream
methods

id
flushInput;

Discard any unread input. The default implementation does nothing.

deferred byte
read;

Read a byte from the receiving stream. This raises astream-eos condition upon end-of-stream.

deferred int
read;

Read a byte from the receiving stream. Return -1 for end-of-stream.

int
readBytes int num

into MutableByteArray buffer;

Read at mostnum bytes from the stream into thebuffer , starting to add bytes at its current length.
Return the number of bytes successfully read, which is 0 for end-of-stream.

deferred int
readRange (int, int) (start, num)

into MutableByteArray buffer;

Read at mostnumbytes from the stream into thebuffer , by writing in it from positionstart . Return
the number of bytes successfully read, which is 0 for end-of-stream.

MutableByteString

readLine;

Read a ‘\n’ terminated sequence of bytes and return them (without the ‘\n’ at the end). Returnnil

upon end of file (if no characters have been collected).

MutableByteArray

readLineInto MutableByteArray buf
truncate: boolean trunc = YES;

315

Chapter 8. Unittom

Read a ‘\n’ terminated sequence of bytes and return them (without the ‘\n’ at the end) inbuf . Return
nil upon end of file (if no characters have been collected). If the optionaltruncate is not NO, the
buffer is truncated before use.

class tom.OutputStream
inherits

State supers:Stream

variables

local static MutableByteString print_buffer;

The buffer used byprint base:... .

instance tom.OutputStream
methods

id
flushOutput;

Write out any unwritten (buffered) output. The default implementation does nothing.

id
nl;

Output a new line to the receiving stream. An interactive stream should override this to also flush its
output if it desires line based buffering.

id
print boolean b;

Undocumented.

id
print byte b;

Undocumented.

id
print char c;

Undocumented.

id
print int i;

Undocumented.

316

Chapter 8. Unittom

id
print long l;

Undocumented.

id
print float f;

Undocumented.

id
print double d;

Undocumented.

id
print pointer addr;

Undocumented.

id
print All object;

Undocumented.

id
print dynamic x;

Sendprint to self for each element of the tuplex .

id
print int value
base: int base = 10

space: int space = 0
flush: int flush = -1

signed: int how_signed = -1
range: char digit_10 = char (’a’);

Output thevalue to the receiving stream.

The optionalbase dictates the base of the representation, which defaults to 10.

If the optionalspace is not 0, it is the number of positions the representation must at least occupy.

If space is not 0, the optionalflush dictates how the representation is to be flushed. A negative
value means left, 0 for center, and a positive value dictates a right shift. The absolute value offlush

indicates the amount of whitespace which must be available at the other end.

The optionalsigned should be 0 for unsigned, or 1 for signed. If it is -1 (the default) the value is
assumed unsigned, unlessbase has its default value, 10.

317

Chapter 8. Unittom

The optionaldigit_10 sets the value to use for the decimal value 10 when using abase exceeding
that value.

deferred void
write byte b;

Write the byteb, signaling a condition upon eof.

deferred int
write byte b;

Write the byteb and return the number of bytes actually written.

deferred int
writeBytes int num

from pointer address;

The lowest level multiple-byte writing method: Write thenumbytes fromaddress to the stream, and
return the number of bytes written.

int
writeRange (int, int) (start, length)

from ByteArray buffer;

Undocumented.

int
writeBytes ByteArray buffer;

Undocumented.

class tom.InputOutputStream
inherits

State supers:InputStream , OutputStream

instance tom.InputOutputStream

class tom.SeekableStream
inherits

State supers:Stream , Constants

instance tom.SeekableStream
methods

deferred long

318

Chapter 8. Unittom

position;

Return the current position.

deferred void
seek long offset

relative: int whence = STREAM_SEEK_SET;

Set the position. Any following operation will operate from the new position. The optional argu-
ment whence defaults toSTREAM_SEEK_SET, for absolute positioning. Possible other values are
STREAM_SEEK_CUR, for positioning relative to the current position, andSTREAM_SEEK_END, to work
relative to the end.

class tom.StreamStream
inherits

State supers:Stream , State

methods

instance (id)
with Stream s;

Undocumented.

instance tom.StreamStream
variables

public InputOutputStream stream;

The stream to which we output and/or from which we input.

methods

void
close;

Undocumented.

id
init Stream s;

Undocumented.

class tom.stdio
inherits

Behaviour supers:All

319

Chapter 8. Unittom

variables

static public InputStream in;

The stream connected to descriptor 0, known asstdin in C.

static public OutputStream out;

The stream connected to descriptor 1, C’sstdout .

static public InputOutputStream err;

The stream connected to descriptor 2, C’sstderr . Like out , this stream is buffered.

methods

void
close int descriptor;

Close thedescriptor . Raises astream-error on failure.

instance tom.stdio
inherits

Behaviour supers:All

File tom/unique-strings

class tom.UniqueString
inherits

State supers:String

variables

static MutableSet strings;

TheContainer of all unique strings. The container mechanism will ensure only those strings
are kept that are still needed.

methods

void
load Array arguments;

Initialize thestrings Container .

instance (id)

320

Chapter 8. Unittom

with String s;

Return theUniqueString containing the same information as theString s . This is the only method
to be used to create unique strings.

protected instance (id)
awake instance (id) us
equal selector cmp;

Find the stringus in thestrings , comparing them using the selectorcmp. If the string is found, the
old string is returned. Otherwise,us is added to thestrings and it is returned.

instance tom.UniqueString
variables

int hash;

The cached hash value of this string.

methods

boolean
equal String other;

Tell theother to compare itself to thisUniqueString .

boolean
equalUniqueString UniqueString other;

ReturnTRUE. This is simple pointer comparison.

int
compare id other;

Override compare, to return fast upon equality.

class tom.UniqueByteString
inherits

State supers:UniqueString , ByteString

instance tom.UniqueByteString
methods

boolean
equal String other;

321

Chapter 8. Unittom

This definition is only here because we can not direct the implementation of this selector to the right
class.

boolean
equalUniqueString UniqueString other;

The same is true for this one.

int
hash;

When called for the first time, hash the string, and remember the value. Every next time, return the
cached value. Obviously, this loses for strings with a zero hash value (which keep being hashed).

id
awakeAfterUsingCoder Decoder coder;

Iff a unique string like the receiving one already exists, return the already existing one. Otherwise,
add the receiving string to the known unique strings.

class tom.UniqueCharString
inherits

State supers:UniqueString , CharString

instance tom.UniqueCharString
methods

boolean
equal String other;

Redefinition since we can not redirect to the right (UniqueString) super.

boolean
equalUniqueString UniqueString other;

Redefinition since we can not redirect to the right (UniqueString) super.

int
hash;

Cached hashing, just likeUniqueByteString .

id
awakeAfterUsingCoder Decoder coder;

Iff a unique string like the receiving one already exists, return the already existing one. Otherwise,
add the receiving string to the known unique strings.

322

Chapter 9. Unit C

TheC unit interfaces TOM withlibc andlibm .

File C/Math
TheMath class wraps the standard mathematical functions present within libc.

class C.Math
Return the length of the hypotenuse of a right triangle whose sides measurex andy in length.

methods

double
hypot (double, double) (x, y);

Undocumented.

double
lgamma double x;

Undocumented.

double
erf double x;

Undocumented.

double
erfc double x;

Undocumented.

double
j0 double x;

Undocumented.

double
j1 double x;

Undocumented.

double
jn (int, double) (x, n);

Undocumented.

323

Chapter 9. UnitC

double
y0 double x;

Undocumented.

double
y1 double x;

Undocumented.

double
yn (int, double) (x, n);

Undocumented.

double
acos double x;

Return the arc cosine ofx . x must not fall outside the range -1 to 1. The return value will be in radians.

double
asin double x;

Return the arc sine ofx . x must not fall outside the range -1 to 1. The return value will be in radians.

double
atan double x;

Return the arc tangent ofx . The return value will be in radians.

double
atan2 (double, double) (x, y);

Return the arc tangent ofy /x , using the signs of the arguments to determine the quadrant of the return
value. The return value will be in radians.

double
cos double x;

Return the cosine ofx . The return value will be in radians

double
sin double x;

Return the sine ofx . The return value will be in radians.

double
tan double x;

Return the tangent ofx . The return value will be in radians.

324

Chapter 9. UnitC

double
cosh double x;

Return the hyperbolic cosine ofx . The return value will be in radians.

double
sinh double x;

Return the hyperbolic sine ofx . The return value will be in radians.

double
tanh double x;

Return the hyperbolic tangent ofx . The return value will be in radians.

double
exp double x;

Return the result of computing e^x .

double
ldexp (double, int) (x, n);

Return the result of computingx * 2^n.

double
log double x;

Return the natural log ofx . x must be positive.

double
log10 double x;

Return the log ofx in base 10.x must be positive.

double
pow (double, double) (x, y);

Return the value ofx raised to the powery , x^y . If x is negative,y must be an integer value.

double
sqrt double x;

Return the square root ofx .

double
ceil double x;

Return the value ofx rounded up to the nearest integer.

double

325

Chapter 9. UnitC

fabs double x;

Return the absolute value ofx .

double
floor double x;

Return the value ofx rounded down to the nearest integer.

double
fmod (double, double) (x, y);

Return the remainder of dividingx by y .

instance C.Math

File C/Std
This class wraps functions from ‘stdio.h’, ‘stdlib.h’, and other ANSI C headers.

class C.Std
Immediately abort execution of the program, causing a core dump on some systems.

methods

void
abort;

Undocumented.

void
sleep int seconds;

Suspend execution forseconds seconds.

int (result)
system String cmdline;

Executecmdline via the system() system call. All limitations of the underlying system() call apply.

int
abs int intval;

Compute the absolute value of the integerintval .

326

Chapter 9. UnitC

instance C.Std

327

Chapter 10. Unit too

The too unit provides TOM with networking, event dispatching, and distributed objects.

File too/AutoLock

class tom.Conditions (AutoLock)
This extension provides deadlock-condition.

variables

static ConditionClass deadlock-condition;

instance tom.Conditions (AutoLock)

class tom.Thread (AutoLock)
Necessary glue withinThread class.

instance tom.Thread (AutoLock)
variables

public Thread blockedBy;

The thread which has to release a lock so we can continue.

methods

boolean
isWaitingFor Thread t;

ReturnTRUEif we are waiting for the argumentThread t to finish. This includes implied (transitive)
waiting.

void
setBlockedBy Thread t;

SetblockedBy . This is solely used internally by theAutoLock class.

328

Chapter 10. Unittoo

class too.AutoLock
Recursive lock with deadlock detection. If deadlock occurs, the faulty thread will be unjammed by
receivingdeadlock-condition .

inherits

State supers:RecursiveLock , Conditions

methods

void
load MutableArray arguments;

Initialization method.

instance too.AutoLock
variables

Thread owner;

The thread holding the lock,nil if none.

methods

id
init;

Designated initializer.

void
lock;

Obtain the lock, but if a deadlock is detected,deadlock-condition will be raised.

void
unlock;

Unlock the lock.

File too/Connection

class too.Connection
inherits

State supers:State , DescriptorReadDelegate , Constants

variables

329

Chapter 10. Unittoo

static MutableEqSet all_connections;

All connection objects.

methods

instance (id)
alloc;

Store the new connection in theall_connections .

void
connection Connection connection

remoteProxyDead int identity
pre

!!all_connections[connection];

Pass this message to theconnection .

instance too.Connection
variables

public Any root;

The root object of this connection.

public Port port;

The Port serving this connection.

MutableEqDictionary local_objects;

The set of local proxies, keyed on their local object.

MutableIntDictionary local_proxies;

The set of local proxies, keyed on their identity.

MutableIntDictionary remote_proxies;

The set of remote proxies, keyed on their identity.

MutableIntArray unreported_deaths;

The set of remote proxy identities that are dead here and which need to be sent to the other side.

int last_proxy_ident;

The last number used as a local proxy identity.

methods

id (self)

330

Chapter 10. Unittoo

initWithPort Port p;

Designated initializer.

protected IntDictionary

local_proxies;

Other connections may inspect our proxies.

Any (object)
localObject int identity

post
object != nil;

Return the local object identified by theidentity to the other side.

Proxy

localProxyFor All object
pre

object != nil;

Return the local proxy to identify the localobject .

Any

remoteObject int identity;

Return the remote object identified by theidentity by the other side.

void
localProxyRelease int identity

pre
!!local_proxies[identity];

Be informed that the local proxy with theidentity has one less remote proxy to care for. If that
number reaches zero, the local proxy object is removed.

void
remoteProxyDead int identity;

By informed (by our remote proxy with theidentity) of the GC death of a remote proxy.

Note that this method is invoked during GC and that no new objects should be allocated.

class too.ServerConnection
inherits

State supers:Connection

331

Chapter 10. Unittoo

instance too.ServerConnection
variables

redeclare ServerPort port;

Our port is only here for accepting connections.

methods

id (self)
initWithPort ServerPort p;

Designated initializer.

void
set_root All r;

Undocumented.

void
readEventOnDescriptor ServerInetPort p;

Instantiate anotherConnectedConnection .

class too.ConnectedConnection
inherits

State supers:Connection , DescriptorWriteDelegate , Conditions

instance too.ConnectedConnection
variables

redeclare ConnectedPort port;

We are actually connected.

PortDecoder decoder;

Our decoder.

PortEncoder encoder;

Our encoder.

ServerConnection master;

If we’re a slave connection (i.e. the working part for a published connection), this is the published
server connection.

332

Chapter 10. Unittoo

boolean invalid;

Iff TRUE, we’ve lost the connection.

methods

id (self)
initWithPort ConnectedPort p;

Initializer for a client connection.

id (self)
initWithPort ConnectedPort p

for ServerConnection server;

Initializer for a slave connection, i.e. a slave to theserver connection.

protected void
initDetails;

Do part of the work for either initializer.

void
invalidate;

Undocumented.

ConnectedPort

port;

Undocumented.

Any

localObject int identity;

Forward to themaster if we have one.

Proxy

localProxyFor All object;

Forward to themaster if we have one.

void
localProxyRelease int identity

pre
!!master -> !![master local_proxies][identity];

Forward to themaster if we have one.

InvocationResult

forward Invocation invocation;

333

Chapter 10. Unittoo

Forward theinvocation to the other side.

void
readEventOnDescriptor ConnectedInetPort p;

Undocumented.

File too/DescriptorDelegate

class too.DescriptorDelegate
DescriptorDelegate classes are used to define the logic for handling read and write events on fileDe-

scriptor s. Users should create new classes inheriting from eitherDescriptorReadDelegate or
DescriptorWriteDelegate , providing an implementation of eitherreadEventOnDescriptor

or writeEventOnDescriptor respectively, to implement their application logic.

instance too.DescriptorDelegate

class too.DescriptorReadDelegate
inherits

State supers:DescriptorDelegate

instance too.DescriptorReadDelegate
methods

deferred void
readEventOnDescriptor Descriptor d;

TheRunLoop has determined that theDescriptor d is readable.

class too.DescriptorWriteDelegate
inherits

State supers:DescriptorDelegate

instance too.DescriptorWriteDelegate
methods

deferred void
writeEventOnDescriptor Descriptor d;

334

Chapter 10. Unittoo

TheRunLoop has determined that theDescriptor d is writable.

File too/DescriptorSet

class too.DescriptorSet
inherits

State supers:State , C

instance too.DescriptorSet
variables

pointer set;

The bitset of descriptors usable to select(2).

int cap;

One beyond the highest descriptor that can be put in the set.

int beyond_last;

One beyond the highest descriptor present in the set.

int num;

The number of descriptors present in the set.

MutableObjectArray descriptors;

The array ofDescriptor objects.

MutableObjectArray delegates;

The array ofDescriptorDelegate objects.

methods

void
dealloc;

Deallocate the memory occupied by theset .

id (self)
init;

Designated initializer.

335

Chapter 10. Unittoo

void
remove Descriptor descriptor;

Undocumented.

void
set DescriptorDelegate delegate

at Descriptor descriptor;

Undocumented.

(pointer, int)
vitals;

Return a pointer to the low-level descriptorset , and the one beyond the highest value in that set.

void
readEvent int d;

Dispatch a read event on the file descriptord, to the delegate at indexd in the delegates.

void
writeEvent int d;

Dispatch a write event on the file descriptord, to the delegate at indexd in the delegates.

File too/PortCoder

class tom.Encoder (PortCoder)

instance tom.Encoder (PortCoder)
methods

boolean
encodeProxy All p;

Encode aProxy . If this is for archiving purposes, this does nothing and returnsFALSE (the default
implementation). Otherwise, in case of wiring, it actually performs the proxy encoding and returns
TRUE.

class too.PortCoder
inherits

State supers:BinaryCoder

336

Chapter 10. Unittoo

instance too.PortCoder
variables

public ConnectedConnection connection;

TheConnection for which we operate.

ConnectedPort port;

Our buffered view of the socket in the direction we handle.

methods

id
initWithConnection ConnectedConnection c;

Designated initializer.

File too/PortDecoder

class too.PortDecoder
inherits

State supers:BinaryDecoder , PortCoder

instance too.PortDecoder
methods

id
initWithConnection ConnectedConnection c;

Undocumented.

Any

decode byte b;

Handle proxy tags before super.

protected byte
readByte;

Undocumented.

protected void
readBytes int num

to pointer address;

337

Chapter 10. Unittoo

Undocumented.

File too/PortEncoder

class too.PortEncoder
inherits

State supers:BinaryEncoder , PortCoder

instance too.PortEncoder
methods

id
initWithConnection ConnectedConnection c;

Designated initializer.

protected State

replacementObjectFor State object;

Return the object returned by askingreplacementForPortCoder to the argumentobject .

boolean
encodeProxy Proxy p;

Encode the proxyp and returnTRUE.

void
flushOutput;

Forward to theport .

void
reportDeaths IntArray deaths;

Undocumented.

protected void
writeByte byte b;

Undocumented.

protected void
writeBytes (int, int) (start, length)

from ByteArray r;

338

Chapter 10. Unittoo

Undocumented.

protected void
writeBytes (pointer, int) (address, length);

Undocumented.

File too/Proxy

class tom.State (Proxy)
This extension ofState only provides theisProxy method, which allows one to discern between
proxy and non-proxy objects.

instance tom.State (Proxy)
methods

boolean
isProxy;

Undocumented.

State

replacementForPortCoder PortEncoder coder;

Return the object to be encoded by thecoder instead of the receiving object. This method is re-
peatedly invoked until an object returnsself . The default implementation retrieves a proxy from the
coder ’s connection .

class too.Proxy
inherits

State supers:State

instance too.Proxy
variables

Connection connection;

TheConnection to which we belong.

int identity;

Our identity with ourconnection .

339

Chapter 10. Unittoo

methods

id
initWithConnection Connection c

identity int ident;

Undocumented.

Connection

proxy_connection;

Undocumented.

int
proxy_identity;

Undocumented.

State

replacementForPortCoder PortEncoder coder;

Returnself , since we know how to be sent over the wire.

void
encodeUsingCoder Encoder coder;

Have thecoder encode us as a proxy; otherwise fail (which is the case when archiving instead of
wiring).

class too.LocalProxy
inherits

State supers:Proxy

instance too.LocalProxy
variables

public Any original;

The object for which we stand.

methods

id
initWithConnection Connection c

identity int i
for All object;

340

Chapter 10. Unittoo

Designated initializer.

class too.RemoteProxy
inherits

State supers:Proxy

instance too.RemoteProxy
variables

redeclare ConnectedConnection connection;

Our connection is connected.

methods

boolean
isProxy;

Undocumented.

InvocationResult

forwardSelector selector sel
arguments pointer args;

The low-level forwarding method. This method is invoked for forwarding a invocation completing
method and this is used by theProxy .

void
dealloc;

Inform our connection from our death. This messages theConnection class, since messaging
objects fromdealloc methods is not allowed. We identify ourselves by ouridentity since passing
around a dead object (which we are) is asking for trouble.

class too.NonProxy
Instances of (subclasses of)NonProxy are never proxies. They always send a copy over the wire.

inherits

State supers:State

instance too.NonProxy
methods

id (self)

341

Chapter 10. Unittoo

replacementForPortCoder PortEncoder c;

Returnself as we do not want to be proxied.

class tom.Number (Proxy)
inherits

State supers:NonProxy

instance tom.Number (Proxy)

class tom.Invocation (Proxy)
inherits

State supers:NonProxy

instance tom.Invocation (Proxy)

class tom.InvocationResult (Proxy)
inherits

State supers:NonProxy

instance tom.InvocationResult (Proxy)

class tom.Selector (Proxy)
inherits

State supers:NonProxy

instance tom.Selector (Proxy)

class tom.Collection (Proxy)
inherits

State supers:NonProxy

instance tom.Collection (Proxy)

class tom.MutableCollection (Proxy)
inherits

342

Chapter 10. Unittoo

State supers:State

instance tom.MutableCollection (Proxy)
methods

id
replacementForPortCoder PortEncoder c;

This is naughty: aCollection , through its inheritance ofNonProxy returnsself when asked its
replacementForPortCoder . However, aMutableCollection must be proxied for maintaining
the right semantics. Hence, we redirect the method to our direct (though repeated) superclass,State .

File too/RunLoop

class too.RunLoop
inherits

State supers:State

variables

local static instance (id) current;

This thread’s run loop.

methods

instance (id)
current;

Return this thread’sRunLoop , creating it if it does not yet exist.

instance too.RunLoop
variables

DescriptorSet read_set;

The read and write sets.

DescriptorSet write_set;

Heap timers;

The timers scheduled with us.

343

Chapter 10. Unittoo

public mutable RunLoopDelegate delegate;

The delegate, if we have one.

boolean d_changed;

Iff TRUE, one of the descriptor sets was changed, indicating to therun method that it should
update some of its local variables.

boolean t_changed;

Iff TRUE, thetimers was changed.

methods

id (self)
init;

Designated initializer.

void
run;

Run this runloop. This method does not return.

void
addDescriptorForRead Descriptor descriptor

delegate DescriptorReadDelegate delegate;

Add thedescriptor to this runloop, read events on which are to be handled by thedelegate . This
does not protect against adding thedescriptor to only a single runloop.

void
addDescriptorForWrite Descriptor descriptor

delegate DescriptorWriteDelegate delegate;

Similar toaddDescriptorForRead delegate , add thedescriptor to this runloop, write events
on which are to be handled by thedelegate .

void
removeReadDescriptor Descriptor descriptor;

Remove thedescriptor from this runloop. No check is performed on whether thedescriptor

actually is registered for reading with this runloop.

void
removeWriteDescriptor Descriptor descriptor;

Similar toremoveReadDescriptor , but thedescriptor is removed from the write set.

void
add_timer Timer timer;

344

Chapter 10. Unittoo

Add thetimer to the current run loop.

void
remove_timer Timer timer;

Remove thetimer which is scheduled with this run loop.

class too.RunLoopDelegate

instance too.RunLoopDelegate
methods

deferred void
runLoopWillSelect RunLoop loop;

Be notified that theRunLoop loop will do another select.

class tom.All (RunLoop)
This extension ofAll provides delayedperform ance.

instance tom.All (RunLoop)
methods

void
perform selector sel

after double seconds
with dynamic arguments

pre
seconds >= 0.0;

Perform the selectorsel with thearguments afterseconds delay. Even ifseconds is 0, the invo-
cation is not fired immediately; a timer is always set to have theRunLoop fire the invocation.

File too/Timer

class too.Timer
Instances of theTimer class provide, in conjunction with theRunLoop , event scheduling functional-
ity. Timer objects can fire once or repeatedly.

Because the trigger time of aTimer can change, in case of repeated firing, aTimer is not aDate : a
Timer represents a moment in time like aDate , but aDate is assumed to be constant.

345

Chapter 10. Unittoo

inherits

State supers:HeapElement

methods

instance (id)
withInterval double secs

invocation Invocation invocation
repeats: boolean repeats_p = NO

pre
secs > 0.0 || !repeats_p && !secs;

Return a newly allocatedTimer instance to firesecs from now, with theInvocation invocation .
Iff repeats_p , the timer will repeat everysecs .

instance too.Timer
variables

public double fire_time;

The next (relative) moment in time we will fire.

public double period;

The repetition period. This is 0.0 for a single-shot timer.

Invocation invocation;

The invocation to fire when we do.

methods

id (self)
initWithFireTime double d

invocation Invocation i
period: double p = 0.0

pre
p >= 0.0;

Designated initializer. If the timed lies in the past, the timer will fire as soon as possible.

void
fire;

Fire the timer and invoke the invocation. If the timer is repeating, and the invocation did not throw
any conditions, then the timer will be re-added to the currentRunLoop . Unfortunately, this will fail
silently.

OutputStream (s)
writeFields OutputStream s;

346

Chapter 10. Unittoo

Undocumented.

void
cancel

pre
[self scheduled];

Cancel this timer with the currentRunLoop . It must be scheduled with thatRunLoop .

void
schedule

pre
![self scheduled];

Schedule this timer with the currentRunLoop . The timer must not already be scheduled.

boolean
scheduled;

Return whether this timer is currently scheduled.

int
compare id other;

Return a comparison of the firing times of the two timers.

File too/inet

class too.InetAddress
An InetAddress really is an IPv4 address. It depends on the underlying IPv6 implementation if this
class is usable for IPv6 addresses.

inherits

State supers:State , Address

methods

instance (id)
with (InetHost , pointer, int) (h, a, l);

Return a new instance with the indicated fields. (Theaddress will be deallocated upon the death of
the newly created address.)

instance too.InetAddress
variables

347

Chapter 10. Unittoo

InetHost host;

The host on which this address resides.

pointer address;

The internet address.

int address_length;

The length in bytes of the address.

methods

(pointer, int)
osAddress;

Return the low-level bare address.

void
dealloc;

Undocumented.

boolean
equal id other;

Undocumented.

int
hash;

Undocumented.

InetHost

host;

Return the host of this address. The host is looked up if the address was not yet related to a host.

protected id
init (InetHost , pointer, int) (h, a, l);

Designated initializer.

OutputStream

write OutputStream s;

Output the address in dotted decimal octet notation.

class too.InetHost
inherits

348

Chapter 10. Unittoo

State supers:State , Host

variables

static MutableDictionary hosts_by_name;

All internet hosts currently known, keyed on their name(s).

static MutableDictionary hosts_by_addr;

All internet hosts currently known, keyed on their address(es).

static InetHost local_host_any;

The wildcard local host.

methods

instance (id)
addressed InetAddress addr;

Return the host known with the addressaddr . If the host can be found in the cache, no lookup is
performed.

protected void
cacheHost instance (id) h;

Add the hosth to the cache.

void
initialize;

Undocumented.

void
load Array arguments;

Undocumented.

instance (id)
named String name;

Return the host namedname. If the host can be found in the cache, no lookup is performed.

protected instance (id)
hostWithAddress InetAddress addr;

Perform a lookup of the host addressedaddr . Return the host, ornil if it could not be found. The
cache remains unaffected.

protected instance (id)
hostWithName String name;

349

Chapter 10. Unittoo

Perform a lookup of the host namedname. Return the host, ornil if it could not be found. The cache
remains unaffected.

protected instance (id)
with (Array , Array) (n, a);

Return a newly allocated host with the namesn and addressesa.

instance too.InetHost
variables

public Array names;

The names by which this host is known.

public Array addresses;

The addresses by which this host is known.

methods

id
init (Array , Array) (n, a);

Designated initializer.

String

name;

Undocumented.

class too.InetPort
An InetPort is an abstract port on an internet host.

inherits

State supers:Port , State

methods

instance (id)
with int port

at InetAddress address;

Return a newly createdInetPort with theaddress and theport .

instance too.InetPort
variables

350

Chapter 10. Unittoo

public InetAddress address;

The address (of the host) at which this port resides.

public int port;

The port on the host.

methods

boolean
equal id other;

Undocumented.

int
hash;

Undocumented.

protected id
initWithPort int p

at InetAddress a;

Designated initializer.

OutputStream

write OutputStream s;

Output the address in dotted decimal octet notation followed by a colon and the port number.

class too.ConnectedInetPort
A ConnectedInetPort is a bytestream on a connected TCP socket.

inherits

State supers:ConnectedPort , InetPort

instance too.ConnectedInetPort
variables

public InetPort server;

Description of the server to which we connected or from which we accepted. In the latter case,
this will be aServerInetPort .

InetPort peer;

The peer socket. Set by invokingInetPort [self peer] .

methods

351

Chapter 10. Unittoo

protected id
initWithPort int p

at InetAddress a;

Designated initializer. Connect to the portp at the addressa.

id
initWithPort int p

at InetAddress a
descriptor int d

server ServerInetPort s
peer InetPort pr;

Initialization used by ‘ConnectedInetPort [ServerInetPort accept]’.

InetPort

peer;

Return the peer port.

void
registerForRead DescriptorReadDelegate d;

Undocumented.

void
registerForWrite DescriptorWriteDelegate d;

Undocumented.

class too.ServerInetPort
A ServerInetPort is a TCP port which is listening for connections to accept.

inherits

State supers:InetPort , ServerPort , Descriptor

instance too.ServerInetPort
methods

ConnectedInetPort

accept;

Accept a connection on the receiving port, returning a connected port.

protected id
initWithPort int port

at InetAddress address;

352

Chapter 10. Unittoo

Designated initializer. Listen on theport at theaddress . If the address is nil , any local address
will do; if the port is 0, it is assigned by the operating system.

void
registerForRead DescriptorReadDelegate d;

Undocumented.

File too/network

class too.Address

instance too.Address
methods

deferred Host

host;

Return the host on which this address resides.

class too.Host

instance too.Host
methods

deferred Array

names;

Return the names for this host.

deferred String

name;

Return the canonical name of this host.

353

Chapter 10. Unittoo

File too/ports

class too.Port

instance too.Port
methods

deferred void
registerForRead DescriptorReadDelegate d;

Undocumented.

class too.ConnectedPort
inherits

State supers:Port , ByteStream

instance too.ConnectedPort
methods

deferred void
registerForWrite DescriptorWriteDelegate d;

Undocumented.

class too.ServerPort
inherits

State supers:Port

instance too.ServerPort
methods

deferred ConnectedPort

accept;

Undocumented.

354

Chapter 10. Unittoo

File too/Nameserver

class too.NameserverDefinitions
The NameserverDefinitions class contains nameserver related constants for any interested class to
inherit.

variables

const DEFAULT_SERVER_PORT = 2360;

The default TCP port on which the nameserver is listening.

const PORT_NOT_FOUND = -1;

The port number returned for the port which is not found.

instance too.NameserverDefinitions

class too.Nameserver
inherits

State supers:NameserverDefinitions

instance too.Nameserver
methods

deferred void
reportTo NameserverClient client

portOfService String service_name
onHost String hostname;

Report to theclient the internet TCP port of the service namedservice_name which is running
on the host namedhostname .

class too.NameserverClient
inherits

State supers:NameserverDefinitions

instance too.NameserverClient
methods

deferred void
service String service_name

355

Chapter 10. Unittoo

onHost String hostname
hasPort int port;

Be informed of theport in response to thereportTo portOfService onHost request.

356

Chapter 11. Unit _builtin_

Any

TheAny class...

Any

TheAny instance...

357

III. Reference

358

I. Tools man pages

359

tesla

Name
tesla — TOM Compiler

Synopsis

tesla [-u unitname | -f file] [options]

tesla {--version}

Description
tesla is the TOM compiler. It translates the TOM source files into C, which may subsequently be
translated by the GNU C compiler, gcc(1), to produce an object file. The input file is usually a unit
file, specified by-u unitname . This unit file describes the files which are to compiled bytesla.
Alternatively,teslamay compile a single source file, specified by-f file .

Regular Options

-I dir

Add dir to the include path.

-1

Use the classic, fully dynamic behavior. This will become useful onceteslacan do whole pro-
gram compilation for greater optiomization.

-F

Write out all files, whether or not they are already present.

-o file

Only output thefile and the header.

-v

Be verbose.

360

Tools man pages

--version

Report the version oftug and exit.

Advanced Options

-C name

Add the classname to the classes in thefile specified by-f .

-C a:b

Like -C name, except makeA pose asB.

-E x:y

Add the extensiony of the classx to thefile specified by-f .

--c-extension foo

Use ’.foo ’ as the extension of generated source files.

-a

Don’t depend upon the presence of unit tom.

-Wx

-Wno- x

Warn or do not warn about ’x ’. Possible warnings areempty-compound .

-f x

-fno- x

Include or exclude thex feature. Known features arereadable-c .

Debugging Options

-ve

Print top expressions while they are read.

-vm

Print methods after having been resolved.

-vf

Emit names of files that are being read.

361

Tools man pages

-vF

Emit names of files that are being resolved.

:trace-parser tesla.ParseTom

Tell the parser to output full debug information. This is really a debugging option for the parser
and will output a lot of data.

tig

Name
tig — TOM Interface Generator

Synopsis

tig {-u unitname } [-F] [-I dir] [-v]

tig {--version}

Description
tig is the TOM Interface Generator. It generates the interface definition files for the specifiedunit-
name. These interface definition files contain descriptions of the classes, methods and object variables
that comprise that unit. A file is created for every original TOM source file in the unitunitname ,
with the extension ’.j ’.

Regular Options

-I dir

Add dir to the include path.

-F

Output all files, whether or not they are already present.

362

Tools man pages

-v

Be verbose.

--version

Report the version oftig and exit.

tug

Name
tug — TOM Unit Generator

Synopsis

tug {-u unitname } { files ...} [-U unit]

tug {--version}

Description
tug is the TOM Unit Generator. It outputs a unit file,unitname .u, detailing whichfiles and
classes make up the unitunitname .

Regular Options

-U unit

Make the unitunitname depend upon the unitunit .

-v

Be verbose.

--version

Report the version oftug and exit.

363

Tools man pages

gp

Name
gp — TOM Parser Generator

Synopsis

gp [-d] [-v] [-o tom_source_file] [-o tom_defines_file] { file }

gp {--version}

Description
gp is the TOM Parser Generator. It outputs a generated TOM source file,tom_source_file .t and
a secondary TOM source file,tom_defines_file .t, when given a grammar specificationfile .

Regular Options

-o tom_source_file

Specify the name of hte file to be used for the source of the generated parser.

-o tom_defines_file

Specify the name of the file to be used when generating the defines used by the generated parser.

-d

Output debugging information while parsing the grammar file..

-v

Be verbose.

-v-flat

Emit flat rules.

-v-cost

Emit non-terminal insertion cost table.

364

Tools man pages

--version

Report the version ofgp and exit. This is not yet implemented.

tomc

Name
tomc — TOM compiler (older, being replaced by tesla)

Synopsis

tomc [options] [file] [output_c | output_info]

Description
tomc is the TOM compiler. It translates the file file containing TOM source, and outputs a file output_c
which can subsequently be translated by the GNU C compiler, gcc(1), to produce an object file. The
input file usually has the extension .t. tomc also produces a file output_info, called the info file, which
contains information needed by the TOM resolver, tomr(1). If one or both of the output files is omitted,
the default name is the basename of the input file, with the extension .c or .i, respectively.

tomc is being retired in favor oftesla.

365

IV. Appendices

366

Appendix A. TOM makefiles

Basics
The TOM makefilesis a collection of makefiles that enable easy building and rebuilding of TOM
program units, library units, and dynamically loadable units. When using the TOM makefiles, you do
not need to be concerned with the details of compilation or of the particular system you are using, or
will be using in the future.

The following makefiles constitute the TOM makefiles:

GNUmakefile.app

Build a program into which dynamic loading is possible.

GNUmakefile.bin

Build a program into which dynamic loading is not necessarily possible. It depends on the op-
erating system being used whetherGNUmakefile.app andGNUmakefile.bin actualy create
different executables (on NeXTSTEP, for instance, they do not differ).

GNUmakefile.lib

Build a library unit.

GNUmakefile.load

Build a unit which is to be dynamically loaded.

GNUmakefile.top

Build only subprojects.

GNUmakefile.common

The heart of the TOM makefiles. The others are just front-ends to this file.

This is what a minimal, exampleGNUmakefile looks like:

UNIT= hello
TOM_SRC= hello

TOM_MAKEFILES_DIR= /usr/lib/tom/makefiles
include $(TOM_MAKEFILES_DIR)/GNUmakefile.bin

To start with the last line, we see theGNUmakefile.bin being included. This means theGNUmake-

file is for a program. TheUNIT is calledhello; this will also be the name of the resulting program.
This simple program contains only one TOM source file,hello.t . Note that the extension is not
specified.

367

Appendix A. TOM makefiles

Important macros
The following macro’s are mandatory except when using theGNUmakefile.top .

UNIT

The name of the unit being built. It depends on the actual makefile being used whether the unit
will be built as a library, application, etc.

TOM_SRC

The names of the TOM source files in this unit, without extension. All TOM source files have ‘t’
as their extension, hence explicitly listing the extension is rather superfluous.

USES_UNITS

The names of the units depended upon by theUNIT. These units will appear in theuses clause
of the unit file. If unspecified,USES_UNITSdefaults totom , i.e., the standard TOM library unit.

LINK_UNITS

The names of the units to be linked with theUNIT to produce the final result. Forbin andapp
targets, this must include thetom unit, and every unit specified in theUSES_UNITS. For load
targets, this should include everything not already in the application into which loading is per-
formed.

If unspecified, theLINK_UNITS are set equal to theUSES_UNITSfor bin andapp targets, and
set toNONEfor load targets.NONE(case is important) means that the result will be linked against
no other units.

Targets
The following standard makefile targets are defined by the TOM makefiles:

all

Build what is to be built. This usually is the default target.

clean

Remove targets and intermediate files.

gendoc

Extract the documentation from the TOM sources.

docclean

Remove the generated documentation.

368

Appendix A. TOM makefiles

More macros
The following macros can be useful -- they are documented and may thus be used:

UNIT_PATH

Specify directories (white-space separated) in which to search for TOM units. These directories
are added to the default directory$(tom_prefix) . When looking for a unitu, for each directory
dir in the path, the directorydir/u is checked for containing the unitu. The first match will be
used.

For example, if your project/home/me/src/myapp uses the units tom, too, and the one called
mylib in /home/me/src/mylib , theUNIT_PATHwould be.. , andUSES_UNITSwould include
mylib . Note that the makefiles use the fact that a unit can reside in a subdirectory of the same
name, in a directory somewhere along theUNIT_PATH. This is especially handy when using a
lot of units, each residing in a subdirectory of a specific top-level directory.

SUBPROJECTS

The names of directories to be visited by make after the project in this directory is built, cleaned,
etc. This macro usually is the only one used in a directory employing theGNUmakefile.top .

C_SRC

The names of any auxiliary C source files, without the extension. For example, the C unit has
a file calledglue.c which contains code that interfaces the TOMMath class with the C math
library. Consequently, the GNUmakefile of the C unit specifies:

C_SRC= glue

Actually, the extension of the actual glue file does not matter, since for every wordmysrconly
the replacementmysrc.o is used in the makefiles. The makefiles however only contain the rule to
create$(GENDIR)/%.o for every C source file%.c .

GP_SRC

Names of any sources togp. As usual, these names exclude any extension.GP_SRCfiles have
the extension.tp .

EXTRA_OBJ

Any extra object files to be linked with the unit.

Secondary GNUmakefiles
The TOM makefiles employ a file namedGNUmakefile.link to list extra objects and libraries
needed by the unit being built. TheGNUmakefile.link is created by running the$(TOMMAKE-

FILES_DIR)/genlinkfile shell script.genlinkfile tries to locate all unit files in the$(LINK_UNITS)

369

Appendix A. TOM makefiles

along the$(UNIT_PATH) , including the corresponding.la (libtool archive) files. When a unit is
found but the archive isn’t, as is the case with the installed TOM standard units, the name of a library
directory is constructed in such a way that also the TOM standard units can be found in their installed
place.

genlinkfile emits, for each unit found, lines that add to the following macros:

UNIT_OBJS

Directives (-l and -L) to have the linker link with the unit’s library archive.

UNIT_DEPS

Files that the unit being built depends upon, suitable for use as a makefile dependency.

In addition, each unit can be accompanied by aGNUmakefile.unit ; for every unit used, that make-
file is included by theGNUmakefile.link . TheseGNUmakefile.unit files can add command line
arguments to the linking phase of the unit being built:

UF_PRE_LIBS

UF_POST_LIBS

Linker arguments;UF_PRE_LIBS will precede all units’UF_POST_LIBS. This is, for exam-
ple, used by a library that provides an abstraction of X11 and that usesAC_PATH_XTRAfrom
autoconfAC_PATH_EXTRAsetsX_PRE_LIBS, X_LIBS , andX_EXTRA_LIBS, and the library’s
GNUmakefile.unit.in will look like this:

UF_PRE_LIBS+= @X_PRE_LIBS@
UF_POST_LIBS+= @X_LIBS@ @X_EXTRA_LIBS@ -lX11

Environment Variables
Parts of the build process are controlled by Makefile macros, which can be usefully overridden by
environment variables.

TESLA_FLAGS

Flags to pass to the compiler, tesla.

TIG_FLAGS

Flags to pass to the TOM interface generator, tig.

TUG_FLAGS

Flags to pass to the TOM unit generator, tug.

370

Appendix A. TOM makefiles

GPFLAGS

Flags to pass to the TOM parser generator, gp.

CFLAGS

Flags to pass to the compiler being used to compile the generated code. Typically, this will be
gcc.

CPPFLAGS

Flags to pass to the compiler being used to compile the generated code. These will be passed
before the command line options controlling includes..

LDFLAGS

Flags to pass to the linker when using eitherGNUmakefile.app or GNUmakefile.bin to build.

MFLAGS

Flags to pass to subsequent invocations of make.

371

Appendix B. GNU General Public License
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA Everyone is permitted to copy and distribute verbatim copies of this license docu-
ment, but changing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users. This General Public License applies
to most of the Free Software Foundation’s software and to any other program whose authors commit
to using it. (Some other Free Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for this service if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs; and that you know you can do these
things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

372

Appendix B. GNU General Public License

GNU GENERAL PUBLIC LICENSE TERMS AND
CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

1. 0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License. The
"Program", below, refers to any such program or work, and a "work based on the Program" means
either the Program or any derivative work under copyright law: that is to say, a work containing
the Program or a portion of it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in the term "modification".)
Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

2. 1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

3. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a.a) You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

b. b) You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge to
all third parties under the terms of this License.

c. c) If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or display
an announcement including an appropriate copyright notice and a notice that there is no war-
ranty (or else, saying that you provide a warranty) and that users may redistribute the program
under these conditions, and telling the user how to view a copy of this License. (Exception:
if the Program itself is interactive but does not normally print such an announcement, your
work based on the Program is not required to print an announcement.)

373

Appendix B. GNU General Public License

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

4. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do one
of the following:

a.a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

b. b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c. c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control compilation
and installation of the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

5. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is

374

Appendix B. GNU General Public License

void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

6. 5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your acceptance of this License
to do so, and all its terms and conditions for copying, distributing or modifying the Program or
works based on it.

7. 6. Each time you redistribute the Program (or any work based on the Program), the recipient au-
tomatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recip-
ients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by
third parties to this License.

8. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent license would not permit royalty-
free redistribution of the Program by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and
a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

9. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

375

Appendix B. GNU General Public License

10.9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and "any later version", you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

11.10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copy-
righted by the Free Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

12.NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU AS-
SUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13.12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MOD-
IFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-
SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRO-
GRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New

376

Appendix B. GNU General Public License

Programs
If you develop a new program, and you want it to be of the greatest possible use to the public, the
best way to achieve this is to make it free software which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than ‘show w’ and
‘show c’; they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

377

Appendix B. GNU General Public License

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

378

Glossary
Class Compile Option

A const or a static class variable that is used as a compile-time option. All class compile op-
tions of a single unit are usually collected into a single class. Class compile options are not yet
institutionalized -- they are a convention to-be.

379

