The TOM Tome

Pieter J. Schoenmakers
Programmers Without Deadlines

Eindhoven, the Netherlands

$Revision: 1.24 $
$Date: 2001/04/08 22:04:28 $

The TOM Tome
by Pieter J. Schoenmakers

Published $Date: 2001/04/08 22:04:28 $
Copyright © 1999 by Pieter J. Schoenmakers

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are
preserved on all copies.

Permission is granted to process this file through DocBook and type-setting tools and print the results, provided the printed document carries
copying permission notice identical to this one except for the removal of this paragraph (this paragraph not being relevant to the printed
manual).

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified
versions, except that this permission notice may be stated in a translation approved by the author.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that
the section entitled “GNU General Public License” is included exactly as in the original, and provided that the entire resulting derived work
is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified
versions, except that the section entitled “GNU General Public License” may be included in a translation approved by the Free Software
Foundation instead of in the original English.

Table of Contents

[=a=3 7= ot OO TSOTTTTTRORTR (]
[TOM: TRE LANGUAGE --vvveeereerrrereseressssesesesessssssesesesessssesssesesessssesesssessssesssessssssesesssssessesesssessssnnes 1
[GETING STATTRA.vvveeteteteeses sttt bbb bbbttt 2
HEMO, WOTTAL. ...ttt 2
[FTOM SOUTCE TO TUNNING PTOGTAM. c...eueaerrereseesreereseresessssssesesessssesssssessssesssesesessesessssses 3

L EXDTESSIOMS . .- vvvtteeereteeeese sttt et eaee bbb bbb bbb b s s b e b b ene ettt eb s 1]
INIMETIC CONSIATIES. .. vvcvevevereeerereesesesesesesesesesesesesssesesssssesesesesesessssssssssesesssssssesssssessssssseses 3

@ Ta=T721 (0] - OO TH

| IaToF 1Yz T F= 101 1= S 3
... 9
IVTOTE ODBTATOTS. .vveovveseveereeeessesessessessseesseessssssseesssnssssessssssssesssessssessessssessnsssssssessansssnn 21
.. o]
i [= i Ao To TN oL
JETIATIONTS. eeseseesesesesesesesesesesssnsesesesesesesssnsnssssesesssssesensnssesesssssesesssnsesesesnsesesesnsesasnes oL
.. 23
RETIIN VAITIBSceueeveetesieseeeeseeiesiestestessesee e esesbeseeseesesessesaestessenseneeneesesteseeseeneenessessessens ks

49 TS O A O L= LSOO SO TP 30
INUIETIC TYDES 1. vveoeveeeeesesesseessseessesssessseessssesseesssessssesssessssesssesssasssessssessesssesssessennsean 30

LA SO o] (=TT L OO

THE POINIET TV -.vvvveevvereseresessssaesssesssssesssesssesssssssssesseessses s sssssses s sess s s sses e saessans

THE SEIECIOT TYDIE . .vvvvvveresreseeessaesssessessesssesssessss s sses st ses s s s s es s s s taessans

T VOIT TYDE. -vvvvveeeeeseeeeeseesssessseesssessssesssesssssssesssessseesssesssses s sssssssessssesssessssessesssensean

[T AYNMAMIC TV vt euerereeeeeiere sttt se ettt st e bbbt bbb s

] O] [Tl Y7 0] = USRS U PP RSP
TRE T TYDR vvvovveeveseeeseeseeessesssesssees s sssssses s st s s ss s s sns s s s s seensean B3

D 0L o4

ST O TS LSOO &3]
Tl aT=Ti 1 7= TaTel OSSR &3]
[OBIECTVAIIADIBS ...ttt sttt bbbttt sttt B
... efs

IATIEADTEc.cveveeeeeeeeeseseeeeeseees et ee ettt b bbb bbbttt e s

a1 aT=Ta11=1 1 =SSO OTSTOTSTRRT
... 39

PTOTECTEH. ... 39

PUDIIC. .. s s s s e oY

S 1 TR 39

oo 1 S 39

LYo =0l F= T TR 39

[VTETIOT OVETTITITIL - - - cvenerereeeeneeseseeeeseesesssensesesesessesesesesessesesenesessssesesesessssesesensssssesesenenes At

Y STSST= T [T TN =T N ax
[OBjeCT alloCation and INTHATZATIDN. «...c.cveeeeseesereeeeresesesesseeeeseseseeseseseseseesesesesessssssenees BE1
OBIECTAESITUCTION.....c...evvevevscececesse s sssss s ss s bbb bbb B3

POIYIIOTIIISIEL ... eveeeeeeeeeeeeseeeeeeeeeeeeeeseeseseeseeeesseeeseesseeseeeeseseeeseesseeeseesseeseeesseeeseeees a3

T a1 oSSR STPSTORPRN za
[VTUITIDIE TNETITAINCE ... vttt ettt sttt sttt B3
BEMANTIGSc.veveeevieeeeest ettt ettt bbbttt be e s a3

\Non-local gotgs

[SsSuing condifions

[nteraction with The Garbage COIEGLOL..........ccceveereeeeeresresese e e eseeseesee e e saeenens B3
[VTETNOT TOTWATTITIG: ... vevvevereerersessesseseeseseesessesseseeseessesensesssssessensensesessessessessensesensessessens B3
FOTWardiNg MECHANISITL.eveuveeeeeerieseesteieeeeeseeresteseesseeesessessessessessesaeseesessesseses B4

[Miessage dispaict] T PSP UR PSRRI
[VTESSATING TTOMI T ...cteteeteeteeeeeteeeestesteerestesaeessesseeeesbeeseesbesseensesseensesaesnnessessenns

F2 T8 (=TT

TT SEIECTON _ATHS . ..curuevererireterereretetetesseesesss st sssssese e s sesesesebebebebeb et bttt ss s s s s snaens
ENum trt_type encoding

Lrt_selector_args_maitch U 78

=) Yo (o T A F- na 1Yo A USROS [(1
... 77
SCu a2 1| [o o R (71
ST T 70 11 TSRS 78

Hlle TOm/All

1e tom LS 1 S= | 0 PPN
Ie tom LS L 1] PPN
TG TOMBYTESUDSIING.evveveeeeeeeeseesessessessesssssesssssssssssssssssssssssssssssssesseessesseeseseseeeee
o 1 0 0PN
1€ TOM/CRAFERCOTIMGeveeveeeeeeeeseesessessassessessessessssssssssssssssssssssssssssssssessesseeseseeeseee
Ie tom ATOUING e

1T 10 T 7 G0 0 T a0 110 N

Elle Tom/C.ondifionC.ias

TSI T 7 0 T 0 11T N

Elle Tom/Conis

File Tom/Constants....

LTS 0T A D L G0 0 S U
..
FITE TOM/DESTTIDTOL ... cveveeeneteeereeieseete st st b et b bt se st b s b b e b e seenes
I TOMDICTIONATY. ... evereeenertesereeieseeteseeteseebe st se bbb b s e b e b e bbb e ssenes
FITE TOM/DOUDIEATTAY. ... eveuereenereeieseeteseetesaebe e s ese bbb sbe s see bbb s b s b sbeneseenes
FITE TOM/EGDICUONGMY. .. eveueveseeeeeseeieseetesaesesessesessesessesessesesseseseesessesessesessssensssenessenes
FileTom/EqHashTable...

EHE TOM/EI. ..o e

FIETOM/EIOATATTAY.ocvcvriiiiisii bbb
[OM/HASATADIE.........cooiiiiiic s

File Tom/HeapElemeént.....

HE TOM/TNTAITAY....cceieiiiiii e e e aaaes
[EITE TOMTNTDICTIONATH .. vt evveeuveesteesieeeteesteesiaeeseeebeesseessessnbeesseessessssesseesseessaesnsennsessens

FilE TOM/TNTEGETRANTEDBE ... cv.vecvereeviee ettt ss sttt ssse bbb ses s sensesans 67

1L TaTaa VA [TV ZaTor=iTe) o TR 3

File ToM/VUTAbIEATTaY.........
File Tom/MUtableBYEATTay.
File Tom/MUtableBYESTring
Ile tom/iviutable arArray
Ile tom/iviutable arstring
File Tom/MUtableDoubleATay
[ITE TOMIVIUTADIEETOATATTAY. . eere e eereesesseseeseesesssseesssssssssessesssssseessesesesseeseeen
HE TOM/IVIUTAD I INTAITAY. . .. et e e s e e s s e e nanannnes
e tom/iviutable |ECLAITAQY.....

File Tom/MutablePointerArray
1HE TOM/IVIUTAD I OTIIINQ. . e et s s s s s s e s s s s n et s s nsa s s naenansnnnns

FilE TOM/OBIECTATTAY.vvvvvrtisisisisisi bbb 202
TR AT o< GO roa

1T TOM P OINTETATTAY .. e veeveeureeteeeeseeseestestessesseeseessesseessesseessessesseessesseensessesssessensennes UG

File Tom/Runiime.
ELETOMISEIETTIDE.......cveeveereereereeteeeesreseestestesresseeseessesseessestesssestesseessesseesessesssessessesnns
1T aTany A= OO
Cile Tom/Sorted....

EUE TOMSTANE. ... s

Elle Tom/StreambBuiier

[(S0 1 N
FITE TOM STINOSITEAIM......ecveeieeciee et eeseeeee et e st e e e be e sre e te e saeeenaeesseesreeereenneesees

EHETOMITITEAA.cvvecvveeveieseee ettt s e s bbb s s se s
..
Eile Tom/TypeDescriptian.... .
1 CE 07 LT TeT oo 1] o SRR

Elle Tom/Unil

TSI O T 0 N

FilETOM/ETCIIVITIE. ..ot
[OM/DENAVIOLITS.......ocviviiiiteiec s e

[(S (0 70T 0 Lo] N

Elle tom/collecrions...

€ TOM/COMTID. ...t b s
...

[OMIATIMIOETS.ccveeereeereereseereseeresesresesreesreeseeseseeseseeresesresesresesresesreseseeseseenesesnesens
TEATTIS .. veeveseeseeseeseeseseseesseseeseesesness e se s e e e st eb e e b e seese e e eseesenseaneer e b e e e e eneenenns euw:
i€ TOM/UNIGUE-STIITIES -+t eveveeeeeeeseeteseetesaeteseesesesseessesessssesseseseeseseeseseesesssenessenessenes B20

(!I
=

Elle (C/SId0..

1 T ToTo X
... 373
| 1 SN (o ToT L OfeTaTaT=Tox 110]| N 379
| R EROI0]A B o o1 (0] D<) (=IO T) (=Y B33
| LSO IO 1A B LI ol 1 o1 (0T =) AP B33
| 1 (=N Ta A =Za T i @faTo [:) U 336
|1 T ToTaYA =ZaTi i B T=TotoTo Y A B37
Eilefoo/PorfEncoder......
...

1€ TOO/RUNMLOO] .-t eveeueeeteeueeseesueesbesteesasseeaeeseesaeeseesbeessenbeeaeeseesaeeeesheensenbeeneesesneennas B43
T L= oY o A N aT = oF ST P PO PP

1 =3 0T T = | N 347}
L= ToT0Y FaT =Y 1YY o Tx OO B53

1€ TOO/PDOTES. ¢ veeueerrerseenreeseeeeseesueesbesbeessasseeseesaesseeneesbeess e b e eseesnesae e e e sbeenne b e eneennesneennas B53
Flle Too/Nameserver...

ppendixX: HowW 10 APPIY These 1erms to_Your NeW Frograms...........ccoevvveveennns B76

... B79

List of Tables

B TNUMIETIC TYPBS. vt e tveeeueersreesteessesssstessessseessessssesssesssessssesnseesessseesssessbessseesssesabessbeesseesasesnsesssenssnen
E=Z_TmMpormant NON-PrNTADIE CRATACTIELS.eceeeerteeeeriesieeeesteeeessesseeseessessaessesseessesseessessessessessenns

-Z._ Ctypes for VDS o evveraeeetets ettt s et a bbbt bbb bbbttt et bbb bbbt n s
B-3. Speed of method invocatjan
A N O - VTS (Tl I 1115 770) =S
[[=Z_SEICTTOT TYDE ETTCOUIMGS .+ vrererereererererensesereresssseseseressssesssessssssssesesssessnsesessnsssssesesssessssesesssensssnses
[[=3_Example Selector name encodjngs

Preface

This book accumulates the information that | have written about TOM in the past four years. That's
exactly four years, as | happen to be writing this preface on 16 November 1999, TOM'’s fourth birth-
day.

The TOM Tomés written in DocBook. When it is finished, | expect to know a lot about DocBook. At
the moment, all | know is that it appears to be a good decision.

In its current form, this book needs an editor’s hand. However, my priority is to get all the information
in, instead of presenting it in a pleasant way. Having all the information in one place already offers
much progress over the previous situation where information was dispersed in many locations.

Eindhoven, 16 November 1999

Pieter Schoenmakersiggr@gerbil.org >

10

|. TOM: The Language

This first part ofthe TOM Tomentroduces the TOM language and its use. We touch on the libraries,
which are given a thorough treatment in the second part.

Chapter 1. Getting started

Hello, world!

This is the famousiello, world! program, in TOM this time -- the line numbers are for clarity; they
are not present in the actual source:

1 implementation class HelloWorld

2

3 int

4 main Array argv

5 {

6 [[[stdio out] print "Hello, world!"] nl];
7}

8

9 end;

10

11 implementation instance HelloWorld end;

The first line denotes the start of the implementation of a class natsleorld . The class ends
with theend; at line 9. Between these linesweethodis defined.

A method is a piece of code associated with an object. In this case the objedtiithéorld class
object. The method we define is calledin . It returns a value of type int and accepts one argument
of type Array. The name of the argumentigv ; the code within the method can refer to the value
of the actual argument through the naangv .

Line 6 contains three nested bracketed expressions; each expressasia message an object.

The inner expression istdio out] . Here, the argumentlessit message is sent to thstdio

class object; this object is thieceiverof the message. In response to this message, the corresponding
method will be invoked, in this case tloat method of thestdio class. Because of this correspon-
dence, the termsending a messagmdinvoking a methodire synonyms and they will be used as
such throughout this book.

Theout method of thestdio class returns aputputStream object to which information can be
written. This stream is usually connected to the user’s terminal. Execution efdinemethod will
resume when theut method has returned.

If we call the result of the first method invocatienthe second expression becomes:
[x print "Hello, world!"]

This sends to the objegtthe messagprint with a single argument, the string ‘Hello, world!. The
stream object will print the string on the user’s terminal and return itself. The third method invocation
thus becomes:

[x nl]

12

Chapter 1. Getting started

In response to this, the stream object will flush any buffered output to the user’s terminal and emit a
new-line character. Like tharint method, it returns itself. This value is ignored here.

In line 7, the method body ends. We did not indicate a return value, so the default value is returned: 0.

In line 11 the instances of théelloworld class are descibed. Since we have no use for them in this
example, the definition can be empty.

From source to running program

The easiest way to get our program running is by creatiggNemakefile with the following con-

tents:
UNIT= hello
TOM_SRC= hello

TOM_MAKEFILES_DIR= /usr/lib/tom/makefiles
include $(TOM_MAKEFILES_DIR)/GNUmakefile.bin

This GNUmakefile assumes that our program source is contained in thenhdilet and that
our executable program will be calldetllo . Furthermore, it assumes that the TOM Makefiles
(see[Appendix A) are available fasr/lib/tom/makefiles ; adjust the definition of the macro
TOM_MAKEFILES_DIRf their location on your machine is different.

If we now runmake, output will be similar to this (what appears here has been edited to fit better):

* [In the preceding paragraph, using <command>make</command> resulisake which is rather ugly.]

$ make
/usr/local/lib/tom/makefiles/=GNUmakefile.common:168: GNUmakefile.link: No such file or directory
building GNUmakefile.link...
if test -z "yes"; then touch GNUmakefile.link; else \
lusr/local/lib/tom/makefiles/genlinkfile -o GNUmakefile.link \
\
-1 Jusr/localllib/ftom -1 /usr/local/lib/tom tom; \
fi
using unit tom from /usr/local/lib/tom/tom
test -f hello.u || \
tug -u hello -U tom hello.t
time tesla -freadable-c :cc-pre :cc-post -1 \
-u hello -I . -l /usr/local/include -l /usr/local/lib/tom
Number of units: 3
Loading unit tom...
Loading unit hello...
Preparing unit _builtin_...
Preparing unit tom...
Preparing unit hello...
1.94user 0.08system 0:02.82elapsed 71%CPU (Oavgtext+Oavgdata Omaxresident)k

13

Chapter 1. Getting started

Oinputs+0outputs (625major+665minor)pagefaults Oswaps
touch .stamp-prepare

lusr/local/lib/tom/makefiles/libtool --mode=compile gcc -g -O2 -1 /usr/locall/include -
| /usr/localllib/tom -1 . -c hello.c

rm -f .libs/hello.lo

gcc -g -O2 -l /usr/local/include -1 /usr/local/lib/tom -1 . -c -fPIC -DPIC hello.c -

o .libs/hello.lo

gcc -g -O2 -l /usr/local/include -l /usr/local/lib/tom -1 . -c hello.c -0 hello.o >/dev/null 2>&1
mv -f .libs/hello.lo hello.lo

/usr/local/lib/tom/makefiles/libtool --mode=compile gcc -g -0O2 -1 /usr/locall/include -
| /usr/localllib/tom -1 . -c hello-r.c

rm -f .libs/hello-r.lo

gcc -g -O2 -l /usr/local/include -l /usr/localllib/tom -1 . -c -fPIC -DPIC hello-

r.c -0 .libs/hello-r.lo

gcc -g -O2 -l /usr/locallinclude -l /usr/local/lib/tom -1 . -c hello-r.c -0 hello-

r.o >/dev/null 2>&1
mv -f .libs/hello-r.lo hello-r.lo
TOM_MAKEFILES_DIR=/ust/local/lib/tom/makefiles /usr/local/lib/tom/makefiles/libtool -
-mode=link \
gcc -L/usr/local/lib hello.lo hello-r.lo -L/usr/local/lib/tom/tom -
[tom -ltrt \
-ldl -lpthread -I_builtin_ -0 hello
gcc -L/usr/localllib hello.o hello-r.o -L/usr/local/lib/tom/tom -ltom -Itrt -
Idl -Ipthread -I_builtin_ -0 hello

* [Briefly explain every command and its use.]

Now our program has been built, we can run it:

$./nello
Hello, world!

Of course, since we are using make, we can change our prdgfam as much as we want and
all we need to do to rebuild it is rumake again.

14

Chapter 2. Expressions

In the previous chapter you've seen how a TOM program is built from files, which contain classes and
instances, which contain methods. This chapter explains the basics of methods, what you can make
them do, and how to write that down in TOM.

Everything in a method body is an expression. We'll start with the simplest kind of expression: con-
stants.

Numeric constants

An example of a rather simple expressiortist 2. When executed its value & just like you'd
expect. Both tha and2 themselves are expressions too. They are the simplest of expressions, and
calledconstantsAs with all expressions, constants have a type. The type®int.

int is one of the numeric TOM typeB-_Table 2-1 lists all numeric types available in TOM. If you're
familiar with C, you'll recognize most of them. The difference is that in TOM the precision, range
and signedness of the types are fully defined: there is no difference between machines. Furthermore,
the char and short C types have been replaced by byte and char respectively, for reasons which will
become apparent soon.

There are several kinds of numeric constants, each with a specific type. Constantsiikessé ,

0377, andoxff are of type int. A leading zero, as @377, denotes a number in octal notati@sff

with its leading0x denotes a number in hexadecimal notation. The case of the hexadecimal digits is
ignored, thu®Xff , OxFf , OXFF, andoxff are all equal.

Table 2-1. Numeric types

type description
byte 8 bit unsigned integer
char 16 bit unsigned integer
int 32 bit signed integer
long 64 bit signed integer
float single precision floating point
double double precision floating point

An integer constant suffixed with or L is of type long. ThugL is a0 typed long. If an integer
constant, which is not an explicit long, is too large to be held by an int, its type will be long. If even a
long can not hold the value, an error is issued by the compiler.

A byte constant is written as a character enclosed in single quote charactersaThissa byte with
a value of 97; 97 being the ASCII value of the letter ‘a’. The quote itself can be escaped using a ‘\'
(backslash). Thug, is a byte with a value of 39. To get a backslash, it too must be escaped-:-

15

Chapter 2. Expressions

Not all byte values can be entered as a character constant, simply because not all ASCII values trans-
late to printable (and typeable!) characters. Such characters can be entered by escaping their octal
value. Thus)\041’ s the capital letteA.

In general, it is awkward to have to remember numeric values for often-used non-printable characters.
lists the shorthands of important character constants which stand for some of the unprintable
ASCII values.

Table 2-2. Important non-printable characters

constant value name description
b’ 0x08 BS backspace
\f 0x0c FF form feed
\n’ 0x0a NL new line
\r' oxod CR carriage return
At 0x09 HT tab
\% 0x0b VT vertical tab

A float constant is a number which includes a decimal point, an exponent, or both1.Ohuse23,
and4.2e1 are all floating point constants of type float.

Floating point constants of type double must have an exponent part and have ‘d’ as the exponent
indicator. Thusld is a floating point 1 of type double.

A floating point constant which seems to be a float, but the value of which is too large to be held by
a float, is also taken to be a double. If the value of a constant is too large to even fit a double, the
compiler will issue an error.

Operators

Expressions are composed of operators and operands. Operators come in three flavours: with 1, 2, or
3 operands. Each operand in turn is an expression.

Each operator has a priority. For instance, the priority oftthe higher than that of, causingl +

2 * 3 to be interpreted as first multiplying by 3 followed by the addition of.. Parentheses can
be used to impose a different evaluation order+ 2) * 3 will first add 1 and2, multiplying the
result with3.

You can experiment with expressions by modifyingltetio.t ~ program to print something different
from its familiar message. Here are a few examples; remember toakaito have the program rebuilt
after you have modified the source.

[[[stdio out] print 1 + 2 * 3] nl];
[[[stdio out] print (1 + 2) * 3] nl];

16

Chapter 2. Expressions

And a more daring example---notice hgvint accepts more than one thing, grouped by parentheses
and separated by commas.

[[[stdio out] print ("0 F =", 5.0 / 9.0 * (0.0 - 32.0), " C"] nl];

lists all operators. Operators nearer to the top have a higher priority than those below it. In
the same group, between horizontal lines, operators have the same priority.

* [Horizontal lines have disappeared.]

Table 2-3. Operators

operator arity associativity description
++, - 1 right increment, decrement
- o~ ! 1 right version, not
* 1, % 2 left multiply, divide, modulo
+, - 2 left add, subtract
<<, >> 2 left arithmetic shift
>>> 2 left logic shift right
& 2 left bitwise and
| 2 left bitwise or
A 2 left bitwise exclusive-or
<, <=, >=, > 2 left ordered comparison
==, I= 2 left equality comparison
&& 2 left boolean and
I 2 left boolean or
-> 2 left implies
?: 3 right if-then-else
=, etc. 2 right assignment (see text)

The unary minus returns the negation of its numeric argument. Thus, evaluating any of the expressions
-1,-(1) ,and-(2 - 1) allreturnthe value -1. Negation preserves the type of its argument: negating
an int value results in another int value.

The bitwise inversion operatot, returns, given an integer numeric argument, an integer numeric
value of the same type, but with all 0 bits replaced by 1 bits, and vice versa.Jthteturns -1.

The boolean not operatdr, returnsFALSEIff its operand has the default value for its type, alRUE
otherwise. For example, the default value of numeric types is ©, sall return TRUEand!456 will
returnFALSE

The value returned by has the boolean type. The only values of this typeT®eEandFALSE, also
known asYESandNQ

17

Chapter 2. Expressions

Apart from>>> and-> the binary operators perform the same function as their C, and many other
languages, equivalents:>> shifts a signed number in the same wayashifts an unsigned number in

C. The implication operatosy , performs the boolean implicatioa: -> b is equivalenttda || b

shows a few examples of their use.

Table 2-4. Examples of>>> and ->

expression result
128 >> 1 64
1> 1 -1
-1 >>> 1 Ox7fffffff
TRUE -> FALSE FALSE
TRUE -> TRUE TRUE
FALSE -> TRUE TRUE
FALSE -> FALSE TRUE

The operators, /, +, -, <, <=, >=, and> operate on any numeric type. The<<, >>, >>>, &, | , and
~ operate on integer numeric typ&, || , and-> operate on the boolean type. Furthermereand
= operate on any type, including those to be introduced later on.

All binary operators are left associative, except the assignment operaters,etc., which is right-
associative. The order of evaluation of the operands follows the associativity of the operator. Thus,
1 + 2 + 3 isinterpreted agl + 2) + 3 , and the3 is only evaluated after the addition nfand
2---not that it makes any difference in this simple case. Furthernaore,b = ¢ meansa = (b =

c) . (We will return to the assignment operator later on---they aren’t much use now when constants
and operators are the only building blocks at hand.)

The boolean operators ashort-circuited This means that if enough information is known about the
operands that the result of the whole expression is known the evaluation of any remaining operands is
skipped. ThuskFALSE && xreturnsFALSEwithout ever evaluating, since its value does not matter.

There is only one ternary operatar,: , also known as the if-then-else operator. To compute the
maximum ofa andb, one could usa > b ? a : b , meaning that it is larger tharb, the second
expression (in this casg will be evaluated and returned as the result; otherwise the result of the third
expressionl) is the result of the whole expression.

In general, when used as? y : z , the type ofk must be boolean, and the typeyofnust equal the
type ofz. Furthermore, only one gof andz will be evaluated.

Local variables

It is often necessary to keep the result of an expression for later use. A good example of this is a
counter: if you count from 1 to 10, when you're ready to go to the counter’'s next value you must

18

Chapter 2. Expressions

know what its current value is. A local variable can be used to hold such values. For exarape, if
a variable, then the assignment

a =1,

will assign toa the valuel. When followed by the expressian + 7, the result of that expression
will be 8.

As you will have guessed, each variable has a type. Before a local variable can be used, it must be
declared, not only to indicate its type but also to declare its existence. The variaisked above
would be declared as:

int a;
You can experiment with variables by modifying thain method of our example program again.

int
main Array argv

{
int a =11, b = 6;

[[[stdio out] print ("fa =", a, " b =", b)] nl];
intc =a* b

[[[stdio out] print ("a * b =", ¢)] nl];
c=a-+b;

[[[stdio out] print ("fa + b =", ¢)] nl];

return O;

}

This example shows that multiple variables can be declared in one declaration, and that an assignment
to a variable can be included in its declaration. In fact, when such an initial value is omitted, the
variable will be set to0. Verify this by omitting the initialization o (i.e., the = 6’) from the
example and running the program again after rebuilding.

In general, if a variable declaration does not specify an initial value, the value of the variable will
be the default value of the variable’s type, e@gfor numeric types an8ALSE when the type of the
variable is boolean.

Loops

One of the more valued features of computers is their ability to repeat, and repeat oftémofise
the crucial language construct underlying concept. Would you like to compute the conversion table
from Celsius to Fahrenheit for every value between -100 and 100? Here’s how to automate that.
int
main Array argv

19

Chapter 2. Expressions

float celsius = -100.0;

while (celsius <= 100.0)

{
float fahrenheit = 32.0 + 9.0 / 5.0 * celsius;

[[[stdio out] print (celsius, " ", fahrenheit)] nl];
celsius = celsius + 1.0;
}
return O;

}

Thewhile loop tests its condition, in this case whethelsius still is less thar00.0 , and as long
as the condition is true, the expression following it is executed. This expression is calleobief
the loop. The loop condition is re-evaluated every time the body has been evaluated.

The example shows another noteworthy item: the body expression actually consists of a declaration
and two expressions, separated by semicolphsafd enclosed in braceg,and}}. Such an ex-
pression sequence between braces is calledngpound expressiohe type and value of such a
compound expression are the type and value of the last expression within the compound. This value
is not always used, like in this example.

Two other loop constructs are available, which basically are nothing more than a variation on the
while loop theme.

The first variation is thelo while loop. For example, the following code prints the numbers fiom
to 9 (inclusive or exclusive?).
int

main Array argv

{

int counter;

do
{

[[[stdio out] print counter] nl];
counter = counter + 1;
} while (counter < 10);

return O;

}

The difference with the plaimhile loop is that the condition is evaluatadter the body has been
executed, i.e., the body is executed always at least once, whereas the bodwlafethdoop can be
skipped if the loop condition evaluatesraLSEbefore the body would be entered for the first round.

20

Chapter 2. Expressions

The third, and last, loop variation is th@ loop. Like thewhile anddo while loops, its syntactical
origins stem from C. Here is a Fahrenheit to Celsius converter for degrees between -100 and 100,
written down using dor loop.
int

main Array argv

{
float f;

for (f = -100.0; f <= 100.0; f++)
[[[stdio out]
print (f, " ", (f - 32.0) * 5.0 / 9.0)] nl];

return O;

}

Thefor loop starts with three expressions, separated by semicolons. The first expression, in this case
f = -100.0 ,is always executed. The second expression is the condition of the loop. If it evaluates to
TRUE the body is evaluated, followed by the evaluation of the third expredsienwhich increments

f by 1. Then the condition is re-evaluated, and, if TRUE the body, and so on.

As has been stated at the start of this chapter, everything in a method is an expression. Obviously
then, loops also have a value. The value of a loop is the value of the body expression the last time it
was executed. If the body is never executed, as can be the casehilith andfor loops, the value
returned is the default value for the type.

More operators
The last loop example showed an operator which was not yet introduced, namdly effect is to
increment its operand, in the example, byt. Similarly,f-- would decreasée by 1.

The increment and decrement operators can be used in a postfix notation, as in the example, or a prefix
notation, as in-f . The difference between these notations is the value returned by the expression.
The postfix notation returns the value of the variable before the modification; in prefix notation, the
value of the expression the new value of the variable.

Given the fact that the value of a compound expression is the value of the last expression contained in
the compoundi++ is identical to

and--f equals

21

Chapter 2. Expressions

f=1f-1;
}

The last kind of operators to be introduced are the modifying assignment operators. For ekample,
f + x can be written aé += x . The same is true for every other binary operator. The precedence of
these operators is equal to that of the normal assignment (they are the [€IC”in Table 2-3).

Conditionals

Next to loops, conditional expressions are also important language constructs. dperator intro-
duced in[the_Section callédperatorsis an example of a conditional expressi@the condition is
TRUE thenexecute what follows the, elseexecute what follows the.

This section introduces a semantically equivalent toth@perator, but, as with a lot of TOM lan-
guage constructs, with a syntax pleasing the eye accustomed to C.

The following example shows the use of theelse construct.

int
main Array argv
{
int n = [argv length];
if (n == 0)
[[[stdio out] print "no arguments"] nl];
else
[[[stdio out] print (n, " arguments")] nl];
}

If this program is invoked without any arguments, the Araagv will not contain any elements, and
will return 0 when asked for itiength . Consequently, the program’s output will he arguments .
When invoked with at least one argument, it will report the number of elemeatgin, which is the
number of arguments.

When you have modified thieello program to have the abowveain method, the following is a
example of its output when run.

$./nello

no arguments

$./hello tiny little program
3 arguments

$./hello "little robot"

1 arguments

22

Chapter 2. Expressions

And thus we discover a bug in our program: the output when invoked with a single argument is wrong
since ‘1 arguments’ is not proper English. You are hereby challenged to fix this, armed with the
knowledge that what follows agise is an expression, just like thieelse is an expression.

In contrast to th@: operator, thelse branch of arf else conditional is optional. If the condition
evaluates t¢-ALSE and theelse branch is missing, the value of the whole expression becomes the
default value of the expected type.

For example, after the following expressions, the valua will be 0.

int b = 3;
int a =if (b < 0) b;

23

Chapter 3. Methods

Now the basics of what can be put in a method have been explained we can move on to building new
methods.

Definitions

As was shown by thenain method in the previous examples, a method has a name, argument types,
and a return type. The name can consist of more than a single part, in which case each part must
be followed by an argument---remember how tlhe method of thestdio class does not need any
arguments.

For instance, in the following example, the method’s nammuitsiply by
int
multiply int a
by int b
{

return a * b;

}

This method accepts two arguments, each of type int, and returns another int. The body of the method
simply returns the result of multiplying andb.

Notice how every name part of the method starts on a new line, and that the nameparts are right
justified. This is considered a readable style of writing method declarations. It is much more readable
than written like this:

int multiply int a by int b { return a * b; }

To test oumultiply by ~ method we add it to the example program, between the start and the end of
the class implementation, and test it using the followiregn method:
int

main Array argv

{

int i, n = [argv length], result = 1;

for (i = 0; i < n; i++)
{
String s = [argv at i];
result = [self multiply result by [s intValue]];

}

[[[stdio out] print result] nl];

return O;

24

Chapter 3. Methods

The receiver of thenultiply by message iself . self is an implicit argument to every method;
it is the receiver of the message which caused invocation of the method. In this exsetiplés the
Helloworld class object.

This example also shows the use o$@ing object, which is retrieved from the arraygv . An
Array stores the objects it holds in a sequence, and usingttireessage, one can ask for the object
at a certain index, as long as the index is within range, in this caseiftlex <[argv length]

The full declaration of that method is

Any
at int index;

That is, anAny object is returned and since we know it iSaing , we are allowed to assign the
value returned to 8tring . In fact, as the namany suggests, we can assign Ay to a variable of
anyclass.

In the example, thestring s is asked for itsdntvalue . intvalue is aString method which
returns the integer value held by the string, in a straightforward way. For example, when asked for its
intvalue , the string'123abc" will return 123,"abc" will return 0, and'0x123abc” will return
1194684.

It is customary for method name parts to use mixed case identifiers, starting with a lowercase letter.
Class names also follow the mixed case convention, but they start with a capital letter. Variables should
be all lower case, with the words within the identifier separated by -’ or *_".

When recompiled, thieello program will, when run, output the result of multiplying its arguments.

$./hello 23 2

46

$./hello

1

$./hello 123456789 98
-786136566

The program behaves as expected, apart from the last example. Two positive numbers, when mul-
tiplied should return a positive number. However, when 123456789 is multiplied by 98 the answer,
12098765322, is too large to fit a signed 32 bits value, which is the int used foedhie and
themultiply by method. Obviously, the problem can be shifted to the 64 bits limit by using long
values, but that is not a real solution; it is important that you realise the existence of such limits.

Tuples

There are occasions, when returning a single value from a method does not suffice, or when it is te-
dious to have multiple method name parts just to have multiple arguments. TOM solves both problems
through tuples.

25

Chapter 3. Methods

A tupleis a group of values within parentheses, separated by commas. For ingtarge4) isa
tuple. The type of a tuple is thteple typeof which the elements are the types of the elements of the
tuple. The type of the example is (int, float).

An example of a method using tuples is tubstring method from theString class.

String
substring (int, int) (start, length);

This method has a single argument, the tugtart, length) . As with a lot of otherString
methods, this tuple is used to select a range of elements, starting atstadex, and running for
length elements, wherelangth of -1 means infinity.

The following example program, when run, will show a running text, probably best viewed on a slow
terminal (of, say, 2400 baud).

int
main Array argv
{
OutputStream out = [stdio out];
String text = "Testing... 1 2 3", spaces ="
int len = [spaces length], finish = len + [text length];
int num = (YJargv length] ? 100 : [argv[0] intValue]);
int i, count;

for (count = 0; count < num; count++)
for (i = 0; i < finish; i++)

{
if (i < len)
{
/* Case 1: Spaces followed by start of text. */
[out print [spaces substring (0, len - i)];
[out print [text substring (0, i)];
}
else if (i < finish - len)
{
/* Case 2: Start and end the line in the text. */
[out print [text substring (i - len, len)]];
}
else
{
/* Case 3: Text followed by spaces. */
[out print [text substring (i - len, finish - i)]];
[out print [spaces substring (0, len - (finish - i)]];
}

[* Go back to the start of the line. */
[out print \r;
[out flushOutput];

26

Chapter 3. Methods

}

As an example of a method returning a tuple, let’s look at usingramerator . An Enumerator
can be used to traverse a collection of objects. After asking the collection fenuamerator , the
method

(boolean, Any)
next;

can be used to repeatedly retrieve the next object. The value returmesgitbys a tuple with a boolean
and an object. If the boolean TRUE the second element of the tuple contains the object retrieved.
Otherwise, if it iSFALSE, the end of the collection has been reached.

The following program is an example of using this method.

int
main Array argv
{
Enumerator e = [argv enumerator];
Any object;
while ({
boolean valid;
(valid, object) = [e next];
valid;
D
[[[stdio out] print ("got one: ™, object, \")] nl];
return O;
}

The example uses a compound expression as the conditionwhilke loop. This isn’t just to show
you this is possible; the tuple returned bgxt can not be used as a boolean condition, and the
boolean must be repeated to give the compound its boolean value.

If the declaration ofvalid were not part of this compound (but put outside tftéle loop), the
condition could be written as

while ({(valid, object) = [e next]; valid;})

which is the common notation.

In addition to providing multi-valued returns, and a compact method argument notation, tuples pro-
vide a sometimes desirable feature of simultaneous assignment. The most obvious application thereof
is that of swapping the values of two variables:

(& b) = (b, a);

27

Chapter 3. Methods

Return values

Up to now, returning from a method was always written usietgrn . This sets the value to be
returned and terminates execution of the method. Sometimes it is desirable to set the return value but
not immediately return from the method. Such constructions are common in languages which only
provide thereturn statement, and resemble the following code snippet:

{

int result = [self computation];
[self deallocateResources];
return result;

}

Using thereturn assignmenthe return value of a method can be set, without causing immediate ter-
mination. A return assignment is written as an assignment with an empty left-hand side. The example
then becomes:

{

= [self computation];
[self deallocateResources];

}

which is much cleaner. It is customary to only usrn ~ when immediate termination of the method
is necessary. The return assignment is otherwise preferred.

When a method does not assign a return value, either thratgin or a return assignment, the
value returned by the method will be the default value of the return type. Thus, the following two
method definitions are equal:

boolean
constantp

{

boolean v;
= V,

}

boolean
constantp

{
}

When a method returns a tuple the return value returned must be set atomically, i.e. it is only possible
to set all values in the tuple at once. There are situation where this is undesirable, and a solution to
this is provided bynamed return values

In the following example, the return type is followed by a tuple of identif{eadid, object)
Each identifier denotes a local variable in the method, which is declared implicitly, and which is

28

Chapter 3. Methods

handled as a normal local variable. Upon return from the method, the value returned will be the tuple
(valid, object) . Intermediate assignments to any of these variables will have the expected result
of affecting the return value. Also, norm@turn and return assignment still operate as expected,
i.e. they will affect the value of these variables.

(bool, Any) (valid, object)

next
{
valid = [self haveMoreObijects];
if (valid)
object = [self getNextObject];
}

If one of the return value names is the name of an argument, be it the implicit receiver saffject

or the message selectond or a normal argument, that part of the return value will correspond to the
value of the argument. The creation of a local variable is omitted in this case. The following method
for example simply returns the value passed to it:

int (value)

echo int value
{
}

Note that the return value name is enclosed in parentheses, i.e. a singleton tuple. Return value names
must always be a tuple, otherwise the compiler can’t discern between the name and the return value
or the first method name part.

A good reason to name the return values is that any documentation or comments about the method
can simply refer to parts of the return value by name.

29

Chapter 4. Basic types

TOM has three kinds of types: basic types, objects and tuples. Furthermore, there is one special
type, void, and there are two special type indications: dynamic indicates that the actual type will be
dynamically checked; and id which, in denotesaatual object instead of the containing, declaring,
formal object.

entity_type:
basic_type
| tuple_type
| object_type

1

An entity_type is the possible type of an entity, such as an object variable, method argument or
local variable.

argument_type:
‘dynamic’
| entity_type

)

In addition to the usual types, an argument can have the dynamic type. The type actually passed will
be encoded in the selector of the method being invoked. It is the responsibility of that method to
retrieve the correct types as indicated by the selector.

return_type:
‘void’
| argument_type

il

The type of value returned by a method can be anything that can be the type of an argument, plus
void, indicating that the method will not return any value.

basic_type:
‘byte’ | ‘char’ | ‘int’ | ‘long’ | ‘float’ | ‘double’
| ‘boolean’ | ‘pointer’ | ‘selector’

Numeric types

TOM has two kinds of numeric types: integer and floating point. The integer numeric types are listed
in [able Z-1.. In places where a humeric type is expected, a narrower numeric type of the same kind
is accepted and implicitly converted. Thus, a byte is acceptable as a char is acceptable as an int is
acceptable as a long; and a float is acceptable as a double.

The default value for the numeric types is zero.

30

Chapter 4. Basic types

The boolean type

The boolean type is used for truthness values. It is extensively used in conditional constructs. The
default value for the boolean type is falseness. The instance tom.All defines the following constants,
each with the boolean type.

const TRUE = 10;
const FALSE = !1;
const YES = TRUE;
const NO = FALSE;

Therefore, any class which uses these constants must minimally inherit from instance tom.All or
another class which does, suchsaste .

The pointer type

The pointer type is a rather abstract type. Values of the pointer type can not be operated upon; they
can only be passed around; their primary use is for the implementation of arrays, integrating with
foreign code, such as that written in C, and for debugging purposes. The default value for the pointer
type is the invalid pointer (NULL in C). Note that, within TOM proper, it is impossible to refer to the
constant null pointer.

The selector type

A selector is an abstract entity holding a name and typing information. A method invocation, also
know as ‘sending a message to an object’, actually is the invocation of some behaviour identified
by the object receiving the message, and the name of the message: the selector. The second part
of a message are the arguments to the method. A selector is a name and typing information on the
arguments carried by a message and return value expected by the sender of the message. Every method
implementation has, as the second implicit argument the seleatdrused to invoke the method’s
behaviour.

The default selector value denotes the non-existing selector. The only operations defined on selector
typed values are equality comparisons.

The void type

The void type is a special type: it indicates the absence of a value. Its most profound use is in typing
the return value from methods; another use is as an expression where an expression is not needed but
also not allowed. void is the only one void-typed value; no operations can be performed on void; and
there is no default value for the void type.

31

Chapter 4. Basic types

The dynamic type

A method which is implemented outside TOM (say, in C) can have a dynamic return type and dynamic
argument types. A dynamic type implies anything can be passed and will be accepted. The type of
the value actually passed to the method is encoded in the selector, which the method receives as the
implicit second argument (afteelf). Similarly, the method implementation can deduce the expected
return type from actual selector. The dynamic type is used by, for instangeerthem : method,

which is defined as

extern dynamic
perform selector sel
: Array arguments = nil;

If perform : isinvoked as
int a, b, c;
(a, b, ¢) = [foo perform bar]

then it would be a (fatal) runtime error if the selector denoteddry did not return a tuple of three
integers.

Object type

Objects are the only way in TOM to create an aggregate value---there is no such thing as a struct.

- All objects---classes and instances---share the sgp@Obviously, the compiler can tell a differ-
ence between Bumber and aByteArray , so not all objects are of the sarkiad.

- A variable with an object type actually is a reference to an object. All objects are allocated from a
heap.

« In the rest of this document, often the type of an expression or entity is referred to. In most cases,
this means the type of the value, or the kind of object if the type is the object reference type.

The default value of an object-typed variable is the invalid refereriice, The type ohil is_builtin_.Any.
Messagingil results in the conditionil-receiver being raised.

object_type:
class_name
| ‘id’
| ‘class’ ‘(" object_type ‘)
| ‘instance’ ‘(" object_type ‘)

32

Chapter 4. Basic types

The plainobject_type is aclass_name ; this indicates thénstanceof the indicated class. id indi-
cates the type of the actual receiver. The variation with a ‘class’ or ‘instance’ shifts the meta level into
the specified direction. Examples:

Foo

A reference to an instance Béo (or an instance of a subclasskifo).

class (Foo)

A reference to th&oo class object (or the class object of a subclassoof).

instance (id)
A reference to an instance of the current receiver. Obviously, it is an error if the current receiver
itself is an instance, since instances do not have instances.

class (id)

A reference to the class object of the current receiver. For the current receiver being an instance,
it denotes the class object; for a class it denotes the meta class object. For meta class objects, it
denotes the meta class object of 8tate class.

As the receiver of a method invocationglass_name denotes the class object.

The id type

The id type is not an actual type. In the context of an object definition, id is identical to the current
class or instance being defined, in contrast with a normal type that would indicate the class containing
the declaration; in the context of an invocation of a method involving id typed arguments or return
values, id denotes the actual receiver of the method.

For example, if a clasBoo declares the following method:
id self;
then the type of the expression

{

Foo a;
[a self];

}

is Foo. If there exists a clasBar which inherits fromFoo, then the type of the expression

{

Bar a;
[a self];

}

33

Chapter 4. Basic types

is Bar, since it is aBar that was the actual receiver of tkelf message (as far as the compiler
knows).

The meta level of id can be shifted towards instances or classes, as can be seen in the following two
method declarations from tigtate class.

<doc> Return a newly allocated instance
of the receiving class. </doc>
instance (id)
alloc;

<doc> Return the class of the receiving object. </doc>
class (id)
class;

Thus, irrespective of the class of which thiloc method is invoked, the compiler knows that the
object returned bwlloc is an instance of the receiving class.

Similarly, theisa instance variable is declared by thmate instance as
class (id) isa;

Thus, in the context of a subclassSthte , theisa has the type of the actual class object, not just
theState class.

Tuple types

Atuple is a hotch-botch of values. For exampgie3, 3.1415) isatuple, and its type is (int, float).

The tuple type is not a first-class type: it is impossible to declare a variable with a tuple type. A single
element tuple type actually is the type of the element. The default value of a tuple type is a tuple with
as elements the default values of the tuple type’s elements. Tuples cat(nesg}; (3, 4)) is

a valid tuple, the type of which is ((int, int), (int, int)). Tuple nesting is rarely used.

The dynamic type can not be an element of a tuple type. All other types are allowed.

The primary use of tuple types is in passing values to or from a method. The following example
declares a methodivmod which accepts one argument being a tuple of two integers and which
returns another tuple of two integers:

<doc> Return (a / b, a % b). </doc>
(int, int)
divmod (int, int) (a, b);
Another use of tuples is in shorthands such as simultaneous assignments:

int a, b; ..;
(@ b) = (b, a)

34

Chapter 4. Basic types

The evaluation of tuple elements is defined to be from left to right. Thus, the result of the following
expression

{
int i = 0;
(++i, ++i);
}
is defined and equal 1@, 2)

The type of an element of a tuple can be neither dynamic nor void.

35

Chapter 5. Classes

We now come to the most important subject of an object oriented programming language: how objects
are constructed. We will use a sim@eunter class as the example along which to explain the object
basics. We know the following aboGbunter objects:

1. eachCounter object maintains information about its current value, and

2.it responds to theextvalue message by returning the next value, thereby updating its current
value.

This description only contains statements aboutdbenter objects, i.e. instances of tt@unter
class. Therefore the class definition can be empty, for now.

implementation class Counter end;

The Counter instances maintain a current value, and respond to¢k&/alue method. This is
written thus:

implementation instance Counter

{

int current_value;

}

int
nextValue

{

current_value += 1;
= current_value;

}
end;

The definition of theCounter instance starts witimplementation instance Counter and ends
with end; . Within this definition, between the first pair of bracesiastance variablds defined.
Instance variables form the state maintained by each instance of the current clas<aevesy
instance will have its own value of tharrent_value . This variable has the type int.

Following the instance variable declaration, tlextvalue method is defined. This method has no
arguments and returns an int. In the body of the method;uhient_value instance variable of the
current instances incremented by 1, and the resulting value is returned. The current instance is the
receiver of the message as a result of which the current method was invoked. Thus, in the following
example

Counter count = ...;
int i = [count nextValue];

36

Chapter 5. Classes

thecount variable denotes @ounter instance; in the second line, thextvalue message is sent
to it, and thenextvalue method will be invoked, with the object we know@sint as the receiver.

Inheritance

We now have a class definition, but no means yet to create instances. The language does not provide
a mechanism to create instances; instead, this functionality is provided by the library. The TOM
standard library contains a claStte that provides the following method:

instance (id)
alloc;

This class method returns a new instance of the receiving class. Thus, invoking

x = [State alloc];

will return a new instance of thetate class. “How does this help us to creaeunter objects?”
you ask. By indicating that @ounter object is also &tate object, which will cause th€ounter

objects to behave &&ate objects, and similar, that th@ounter class behaves as tistate class.
This is calledinheritance every method defined btate is not only applicable t&tate , but also
to Counter . To indicate that ou€ounter inherits fromState , the class definition is changed to:

implementation class
Counter: State

end;

Now any method or instance variable defined for $itate class (or instance) now also applies to
theCounter class (or instance). To denote the relationship between the two classes, is called
asuperclas®f Counter , andCounter is asubclas®of State .

The methods inherited frostate include thealloc method and we can now seatbc messages
to theCounter class to create ne@ounter instances:

Counter countl = [Counter alloc];

The return type of thalloc method is instance (id). The id type denotes the type of the receiving
object, as seen by the caller. In the example, the receiver Bdingter class object, and id denotes
theCounter class. The instance () modifies the type between the parentheses to indicate the instance
of that type. The type of object returned by thiiec method in this example thus is ‘instance of the
Counter class’, written a<ounter , which is exactly the type of theountl variable to which the

value returned is assigned.

37

Chapter 5. Classes

Object variables
Classes and instances must be able to hold state. TOM provides a few kinds of state.

implementation class StatefulCounter

{
int starting_value;
}

end;

As with theCounter instance defined previously, we've definedtatefulCounter , which pos-

sesses state. In this case though, we've created a class variable, which maintains a single value, ac-
cessible by all instances of that class. However, each sub-cl&sstefilCounter would receive

its own copy ofstarting_value that would be shared by its instances.

Qualifiers

Various qualifiers may be applied to the declaration of an object variable. These qualifiers alter the
behavior and scope of that variable.

mutable
mutable int starting_value;

A mutable variable automatically defines a setter method of the form:

void

set_starting_value int _new_value
{

starting_value = _new_value;
}

The compiler will generate the method using the correct type and variable names. This may be used
in conjunction with thepublic qualifier.

obsolete
obsolete int starting_value;

An obsolete variable has been marked to warn programmers that it will be going away in the
future. References to this variable will generate warnings. Additionally, ifdtiidic or mutable

the methods generated will also be flaggedlasolete and use of those methods will generate
warnings.

* This does not completely work yet. Variable references do not yet generate warnings.

38

Chapter 5. Classes

private
private int starting_value;

A private variable is only accessible to methods on the class which defined it.

protected
protected int starting_value;

A protected variable is only accessible to methods on the class which defined it, as well as any
sub-classes.

public
public int starting_value;

The compiler automatically creates an accessor methoddaislie variable. The accessor is of this
form:

int

starting_value
{

= starting_value;
}

The compiler will generate the method using the correct type and variable names. This may be used
in conjunction with thepublic qualifier.

static
static int starting_value;

A static variable only exists upon the class which defined it. Sub-classes do not receive their own
copy of the variable. Thetatic qualifier is only valid on class variables.

local
static local int starting_value;

A local variable’s value is stored within thread-local storage. Ibeel qualifier is only valid on
static class variables.

39

Chapter 5. Classes

redeclare
redeclare long starting_value;

Redeclaring a variable allows the programmer to change the type. Redeclaring a variable that was not
previously declared is not allowed.

Method overriding

Suppose we needlavoCounter object thatincrements its value by 2 instead of 1 each tiene/alue

is invoked. We could write @awoCounter class from scratch en end up with a class very similar to
Counter , but that wastes the effort we put in developing@wainter class and duplicates that effort

in creating theTwoCounter class. The severity of this problem increases with the complexity of the
classes and the effort needed to develop them, and to debug, test, document, etc.

Luckily, just like Counter inherits from State , TwoCounter can inherit fromCounter . Since
we need different behaviour for theextvalue message, th&woCounter can provide its own
nextvalue method, overriding the method provided Gyunter .

implementation class TwoCounter: Counter end;

implementation instance
TwoCounter

redefine int
nextValue

{

current_value += 2;
= current_value;

}
end;

WhennextValue is sent to af'woCounter instance, the object will add 2 to itsirrent_value
and return the result. Apart from this methodveoCounter behaves exactly the same aSaunter .

Messaging super

In the previous section, theextvalue method in theTwoCounter class was a complete rewrite of
the original method. If the method being overridden performs quite a heavy task, it is a waste to have
to fully rewrite or copy it, when all that is needed is a slight modification before or afterwards. In the

40

Chapter 5. Classes

example, all that is needed by thextvalue of TwoCounter is an increase of theurrent_value
before the code of the original method.

The original method can still be invoked, by messaging the special recaijwar , as is show in this
example:

redefine int
nextValue

{

current_value++;
= [super nextValue];

}

The effect of messaginguper is that the method invoked will be the method defined or inherited
by the superclass of the current class. The valugethif within that method will be the same as in
the current method, thus messaging super is like messagiing with the only difference being an
indication which class is to provide the method implementation.

Messaging super need not just concern the method overridden by the current method. Any method
can be invoked, though that is highly unusual, except in the case of initializers, where the designated
initializer of the subclass invokes the designated initializer of the superclass. Though actually different

these methods are identicanceptually

Theredefine qualifier shown in the example method definitions in this section are actually optional.
The compiler can be directed to issue a warning whestefine is omitted, but due to reasons to
become clear later, the presenceeafefine can not be required.

Object allocation and initialization

An object returned bylloc is in a known state: each instance variable of the object has the default
value of its type (except the instance variables introduce@thye , most notablyisa , which is a
reference to the object’s class). The state of default values however is not necessarily a meaningful
state. For example, if the specification of tbeunter objects included that the first value normally
returned by an instance is 10, the proper initial value oktheent_value would be 9. Therefore,

every object must be initialized after allocation. The default initialization method has no arguments;
it is defined byState as

id

init
{

= self;
}

The conventional way of creating a new instance of a class is by invakiotg andinit in a single
expression.

MyClass x = [[MyClass alloc] init];

41

Chapter 5. Classes

If Counter objects would indeed return 10 as the first value returned frextvalue , the initial-
ization method would look like this:
id
init
{
next_value = 9;
= [super init];

}

Often, initialization of an object needs one or more arguments. An example of this is an initializer for
theCounter class where the first value returnedrmktvalue can be specified.
id

initWithValue int value

{

next_value = value - 1;
= [super init];

}

In case of multiple initializers, usually, one is the designated initializer and the other initializers can
be implemented by invoking it. For examplejriftwithValue were the designated initializer of a
Counter , theinit method could be implemented like this:
id

init
{

= [self initWithValue 10];
}

An advantage of this setup is that subclasses only need to override a single initializer, when necessary,
instead of all or any number of them.

Always having to invoke two methodsalfoc and some initializer) just to create a new object can
become a burden. For this reason, classes can provide, through inheritance or by implementation, one
or moreallocators which pack the allocation and initialization into a single method. For example,
State providesnew as the default allocatonew allocates a new object and invokes the default
initializer.
instance (id)

new

{
= [[self alloc] init];

}

Using the allocator, objects can be created easier, though not faster since it involves an extra method
call.

MyClass obj = [MyClass new];

42

Chapter 5. Classes

Just like a class can have a different designated initializer than its superclass, it can also have a
different designated allocator. TiNumber class for instance, provides an allocatgth for easy
allocation:

Number one = [IntNumber with 1];

Object destruction

The lifetime of objects is controlled by the garbage collector within the TOM Runtime. When no re-
maining strong references to an object remain, the GC will collect the object, deallocating the memory
consumed by the object. Just before the GC collects the object, it invokes a deallocation notification
method on the object whose default implementation is providestdng :

void
dealloc

{
void;

}

An object must override this method to perform cleanup operations specific to the needs and imple-
mentation of that object, such as closmg files, shutting down database connections, or freeing OS
resources. An example of thisiescriptor

void
dealloc

{
if (descriptor != -1)
bind ((stream-error, nil))
[self close];

}

This method ensures that tbescriptor is closed, avoiding the leak of a file descriptor at the OS
level.

When implementating dealloc method, care must be taken to avoid messaging any other objects
from within this method, as they may have become garbage as well, and already been collected. Since
class objects can not become garbage, it is safe to message class objects.

There are no guarantees that an object will be collected in a timely manner, or even at all (should
references remain). This makes it critical that garbage collected objects not be relied upon to manage
the lifetime of very limited resources such as file descriptors. They should also not be used to manage
objects whose collection is time critical, such as objects which are user-visible.

43

Chapter 5. Classes

Polymorphism

A subclass understands the same messages as its superclass since every method defined by the su-
perclass is inherited by the subclass if it doesn't provide its own method definition for the particular
message. In the case Gbunter and TwoCounter this means that any place where an object is
handled as if it is &ounter instance, &woCounter instance can be substituted.

For example, the following method retrieves tiextvalue from aCounter object passed as the
argument:
int

getNextValueFrom Counter counter

{

= [counter nextValue];

}

When this method is passedTavoCounter object instead of the expect&bunter , sending the
nextvalue method is still valid. In fact, sendirmnymessage understood bZaunter will be valid,
since theTwoCounter is a subclass of the expectedunter class. This observation is universally
applicable: any time a certain class is expected, passing a subclass is equally valid.

Now, what happens when the following code is executed?

Counter c2 = [TwoCounter alloc];
int i = [c2 nextValue];

The variable2 has typeCounter , but actually referencestavoCounter object. When theextvalue
message is sent, which method is actually invoked: the one defineduyer , because that is the

type ofc2, or the one defined bywoCounter , because that is the actual class of the receiver? The
answers is that the actual class of the receiver, and not the caller’s idea of the receiver’s type, de-
cides which method is invoked. This is callpdlymorphismthe method invoked depends only on

the receiver.

When looking back you'll notice that at a lot of places in the preceding sections, the polymorphism
was already used, without mentioning it. Yet, intuitively, the meaning was always obvious.

A class is not atomic

A class defines the behaviour of its instances, and the state that they carry in support of that behaviour.
You can use this class as-is, or subclass it to provide more specialized behaviour. This is where the
story ends with most object oriented programming languages, but not with TOM. In circumstances
where you have no control over a class, for instance because it is part of a vendor-supplied library, not
being able to amend it to your needs might just mean that you can not use the class or, even worse,
the whole library.

TOM classes are not atomic. A class can be modified: you can add methods, instances variables and
superclasses, without modification to the original source, which is essential in case you do not have

44

Chapter 5. Classes

access to it. Modification can take place at compile, link, and run-time. Methods can also be replaced,
for example to fix erroneous behaviour of the original implementation.

* [A limitation of the current runtime library is that adding instance variables at run time to a class of which instances have
been allocated is not possible.]

Suppose th&€ounter class we have used as an example throughout this chapter is supplied to us
without the source code. It doesn’t fully suit our needs, but we do not want to waste any effort rewriting
it and we have no control over some locations in the code wheveter instances are allocated,
making subclassing not an option. We can writeeatensiorof Counter to make it suitable for our
purpose.

Suppose the needed extra functionality tsiaent_value method which returns the current value
of theCounter . We can supply this functionality in the following extension:

implementation instance
Counter extension fix
int

current_value

{

= current_value;

}

end,;

Multiple inheritance

Multiple inheritance refers to the ability of a class to have more than a single superclass. Various
object-oriented languages provide multiple inheritance; equally many languages provide only single
inheritance, possibly with ‘interface inheritance’ constructs like Objective-C’s protocols and Java’s

interfaces. C++ at one point in its committee life, in all its baroqueness, had both multiple inheritance,
plus inheritance of interface through signatures.

Semantics
Suppose the clagshas bothB andC as a superclass.

implementation class D: B, C
end;

implementation instance D
end;

What effect does this inheritance of two classes have?

45

Chapter 5. Classes

- Any state defined for instances®br Cis also present in instancesmfThere is no sharing of slots
based on the name of instance variables as in CLOS. Thus, every instance vadahkuming
space in an instance 8for C, also consumes space in an instancp.of

- Every method defined faB is also defined fob. Obviously, every method defined faris also
defined forD.

- If both B andC define the same methdab , a method clash is said to have occured, arsthould
provide its own implementation of that method. This is not mandatory; it is not checked by the
compiler; it is optionally checked by the resolver. If a method clash is not resolyedgeam-
condition is raised when the method is invoked at run time.

A class with instances that carry state (i.e., instance variables) must be a subclassatéthelass. If

bothB andC maintain state, they must both inherit fr@rate , which brings up the issues involving
repeated inheritance. Actually, these issues are mild in TOM when compared to the same issues in
languages like C++ or Eiffel. To sum it up: repeated inheritance is shared inheritance.

- With respect to instance variables, things remain the same: every instance variable declared in a
superclass gets its spot in the subclass. Thus|ly has onésa instance variable (inherited from
State), even though it ‘is inherited twice'.

- If amethodfoo is defined byState , unharmed by, and redefined bg, it is the redefinition o2
that is applicable t®. The implementation bgtate that ‘is visible’ through the inheritance &f
is nulled by it being overriden in the inheritance path throagh

Messaging super

Messagingsuper is performing an invocation of a method as provided by a superclass. Usually, the
method is invoked from the method that overrides the original definition. For example, the following
is not uncommon for an initializer:
id

init
{

my_counter = 1,

= [super init];

}

If a class has multiple superclasses, the message to super must indicate which superclass is to provide
the method implementation. If the super message is unambiguous, the compiler will make the obvious
choice, that can be described as follows: Suppose Claserrides the methothit as described

above. Imagine a clags with exactly the same superclasse®dsut without overriding any method.

Then, invokinginit on an instance of will be bound to a particular method implementation. If

that implementation is provided by a direct superclasg of is only visible through a single direct
superclass oE, than that is the superclass a message to superéfers to. If, however, there is a
method clash, or the method is visible through more than one direct superclass, the super reference

46

Chapter 5. Classes

is ambiguous and must be disambiguated, as shown in this example (note that the syntax of directing
which super to message is different from ‘casting super’):
id
init
{
my_counter = 1;
= [super (B) init];
}

Net effect is that when dynamic loading introducesidn method for instances of class that
change will not be applicable to this method and its messaging of super.

Special classes

Several classes can be recognized in any TOM program, much like the standard classes in other
languages. For example, in Smalltalk, thbject class resides at the root of the inheritance tree.
TOM employs the following special types c.g. classes:

Top

The implicit supertype of all object types. This type is not very useful, as it does not define any
behaviour and can not be extended.

Any

The implicit subtype of every object type: when used as the return type of a method that can
return any object, the caller never needs to cast the value that is returned. For example, the
following method is the only object retrieval method of thigiectArray class (which offers a
read-only array abstraction that stores object references) that actually directly retrieves an object:

Any
at int index;

All

The conventional supertype of all object types. All classlesuld either inherit fromState
(see below) or both class object and instarstesuldinherit from theinstance (All) . The
instanceAll defines all kinds of behaviour that is useful fdl objects, both class objects and
instances.

Being the supertype of all objectsll can be used as the type of a formal argument, allowing
any object type to be passed as an actual argument, without needing a cast. This is used, for
example, by the only method of thutableObjectArray class (which offers a read-write

array abstraction that stores object references) that actually directly modifies the array:

void

47

Chapter 5. Classes

set All object
at int index;

State

Every class must inherit frorState for the instances to be allocatabiate is also the
class that defines thea object variables and that provides the designated way to create new
instances, namely through thboc class method.

Theinstance (All) is the conventional supertype of all objects, a fact that is visible in the
definition of theState class:

implementation class State: instance (All)

end;

implementation instance State: instance (All)

end;
The usefulness of th€op and Any types is restricted to compile time: they do not represent real
objects that can be allocated or extended. The pervasive preseidie ehables the addition of
behaviour taall objects, not discriminating between instances and class objects, simply by extending

theAll instance. Similarly, behaviour can be added to all classa#i instances, simply by extending
theState classor theState instance.

TheState is a superclass of all classes that specify allocatable insta®iees. specifies the object
variables that are needed in every instance and class objeet. also is the class that provides the
object allocation mechanism, through #ilec class method.

Every instance is described by its class, and every class by its meta clasialhemeta class is
also the meta-meta class of every meta-class. To prevent cgties, can not inherit from classes
that define class methods.

Collections

More coming.

48

Chapter 6. Advanced topics

Blocks

Basics

This section discusses blocks as they were added to TOM by Tesla. The old TOM compiler, tomc,
can't handle blocks.

A block is a piece of code that of which the execution is postponed. Instead of the code being executed
immediately, an instance of tléock class is created as a placeholder for the piece of code. When
theBlock is evaluated, through itsval method, the piece of code is actually executed. Here is an
example of our favourite program, usin@tck .

int
main Array arguments
{ Block b = |{ /* no arguments */
|| [[[stdio out] print "hello, world"] nl];
H:
[b evall;
}

A Block starts with |[{ and ends with }|. In between are at least two vertial bars (') that precede
the actual code that is contained in Bieck . The verbose spacing, comment, and assignment to a
variable are optional. The same program could look like this:
int

main Array arguments

{
[l [llstdio out] print "hello, world"] nl]; }| evall;

}

A Block can have arguments and it can return a value. The arguments are declared like the argument
accompanying a method name part: either a single argument name preceded by its type, or an argu-
ment tuple preceded by a tuple type. The return typeBibek is not declared: the value returned by
aBlock is the value of the last expression and its type is deduced by the compiler. In the following
example, we employ Block to return the result of adding two integers:
int

main Array arguments

{
Block adder = [{ (int, int) (i, j)

i+

49

Chapter 6. Advanced topics

i
int result = [adder eval (24, 42)];

[[[stdio out] print ("24 + 42 =", result)] nl];
}

A Block does not need to be evaluated lexically within the enclosing method,; it can be evaluated from
anywhere. Irrespective of the context in which ieigaluatedaBlock can reference the variables in

the context where it wasreated In the following example, the variabteunt is incremented twice,

and the number printed is 2.

void
do Block a_block
{

[a_block evall;

}

int
main Array arguments

int count;
Block b = |{ || count++; };

[self do b];
[b evall];

[[[stdio out] print ("count = ", count)] nl];

}

When aBlock references variables from its context, tBieck is invalidated when that context
exits. The following example shows how such a situation may occurBlbek , created in the
one_block_please method, is evaluated after thme_block please method has exited. As a
result, theeval method raises @ondition

Block
one_block_please

{

int num_invocations;

= { || ++num_invocations; }|;

}
int
main Array arguments

{

Block block = [self one_block_please];

/I FAIL: the context in which the BLOCK
/I was created has already exited.

50

Chapter 6. Advanced topics

int n = [block evall;

[[[stdio out] print ("number of invocations = ", n)] nl];

}

Apparantly, aBlock can not use variables from its context when that context exits before the useful
life of theBlock has passed. Sineelf is part of the context, also instance variables can not be used
for that purpose. To remedy this, thus allowin@lack to maintain information over invocations
irrespective of whether its context has exiteddleck can employblock variablesas shown in the
following example, where thelock created has one block variabbeym_invocations . Notice how
block variables occupy the space between the double vertical bar we used up to now:

Block
one_block_please
{
= |{ /* no arguments */
| int num_invocations;
| ++num_invocations;
H;
}

int
main Array arguments

{
Block block = [self one_block_please];
int n = [block eval];

[[[stdio out] print ("number of invocations = ", n)] nl];

}

If you want to reference instance variables froBiack after its context has exited, you can do so by
declaring a block variablself , as the following example shows. Note how the value that is assigned
to the block variableelf is the value of the implicit method argumesetf

implementation instance
TOM

{

int num_cows;

}

Block
cow_counter

{
= [{ /* no arguments */
| id self = self;
| num_cows++;

s

51

Chapter 6. Advanced topics

int
main Array arguments

{
Block cc = [self cow_counter];
int i;

for (i = 0; i < 10; i++)

{
int cow_i = [cc eval];
[[[stdio out] print ("cow number ", cow_i)] nl];
}
[[[stdio out] print (num_cows, " cows")] nl];
}
end;

The eval method

Theeval method of theBlock class is declared thus:

dynamic
eval dynamic arguments;

Theeval method accepts any argument and returns any type of value. The types of the actual ar-
gument and the value returned is deduced by the compiler and administered in its output. At run
time, theeval method checks to see that the arguments passed match the arguments expected by the
Block , and that the type of value returned by Bleck matches the type of value that is expected by

the caller. Upon a mismatch,Gondition is raised. As an exception, any type returned IBfoak

matches an expected return type void.

The overhead in execution time of teeal method is similar to that of thperform with of the

All instance. This overhead is somewhat reduced by provigialg methods that are specialized on
their types. As an example, this is what thal method looks like that accepts an int and returns an
int:

int (result)
eval int al

{

pointer fn = code;
if (check_block_selectors && cmd != arguments)
if ([self arguments_fail (arguments, cmd)])

return;

<c>
result = ((tom_int (*) (void *, void *, tom_int)) fn)

52

Chapter 6. Advanced topics

(self, cmd, al);
</c>

}

In these specializeelbal methods, the following variables and methods are used:

code
an instance variable of thidock that points to the C function which is executed to evaluate the
Block ;

check_block_selectors

aclass compile optiothat is usuallyrRUE and

arguments

a selectors that describes the formal argument and return type of the re@dikg

arguments_fail (formal, actual)

a boolean method that returMRUEIf the actual selector passed to @&wal method can not fit
theBlock ’s formal selector. In fact, whearguments_fail is about to returmRUE it will
raise aCondition

TheBlock class comes with some specializadl methods, including this example eval int
Additional specializeédval methods, can be added in an extension oftleek class.

* TODO: Execution-speed measurements.

Conditions

Conditions in TOM are modeled after Common Lisp conditions (§eenmon Lisp the Language, 2nd
edition (http://www.cs.cmu.edu/Groups/Al/html/cltl/clti2.html)), with some simplifications. Condi-
tions are not like exceptions in languages like C++ or Java, the most important difference being that
the stack is not unwound while the condition is being handled.

Creation and issuing of conditions is functionality of the TOM runtime library. Handling conditions is
part of the TOM language. We'll start the discussion of these two intertwined subjects with catching
things that are thrown.

Non-local gotos

TOM provides exactly one way to perform a non-local gdtoowing something at an object, by
invoking thethrow method that is defined by thdl instance, as in:

[my_object throw void];

53

Chapter 6. Advanced topics

Here, void is not the void type, but the single possible value of that type, which bears the same name.
Thus basically, we throw nothing special at the object we knoma®bject .

Of course, throwing something is not really interesting if you can not catch it. To setup a catch for a
value thrown at an object, useatch expression:

catch (my_object)
[foo do_difficult_with bar];

catch is followed by thetag expression in parentheses, followed by a body expression. While the
body of the catch is evaluated, anything thrown at the tag will be caught by this catch. In the example,
we’'re catching values for the object we knownag object

The tag expression must be an object. The tag caril bebut that is not very useful, since you will
not be able to throw anything ai

A catch is an expression and like every expression, it has a type and it produces a value after evalu-
ation. The value of the catch expression is either the value of the body expression or the value thrown
at the tag object. For example, the following is an elaborate way to assign to the baaldeather

al is larger thara2.

boolean a = catch (self)

(
if (@l > a2)
[self throw TRUE];
FALSE;
Dk

When executing, il > a2, the valueTRUEwWiIll be thrown at the catch: execution of the body
expression is terminated, the stack is unwound up to the stack frame of the catchdftbjmp if

you like), and the valugRUEIis returned as the value of tlratch expression. In the other case, if
al is not larger thamm2, the body of theéf is not executed, and the result of the catch is the value of
the last expressioffALSE

Incidentally, note the parentheses around the body compoutedadf : the body of a catch must be
an expression, and a compound can only be an expression as an element of a tuple. (The tuple has
only one element in this case.)

It is an error if the type of value thrown at an object does not match the type that the catch expects.
The one exception to this rule is when the value void is thrown, in which case the value returned by
the catch is the default value of the type to be returioefdi(numberspil for objects, etc).

Issuing conditions

A condition is an object, an instance of tBendition class. A condition is normally created by
invoking the following method of th€ondition class:

instance (id)

54

Chapter 6. Advanced topics

for All object
class ConditionClass condition_class
message String message;

The three arguments provide the values of the three instance variables with the same name, of the
Condition object that will be created and returned. Tdiject is the object to which the condition
applies, for example theile object for a condition applying to some failed operation on that file.

The message is meant to provide a description of the condition, to be read by a human and not to
be interpreted by a program. An example of a useful message is the string returned by the C library
functionperror

The condition_class is an instance of th€onditionClass class. Each condition-class object
has a name, and through their super-condition-class instance variable, the condition class objects
describe a single inheritance hierarchy of condition classes.

TheConditions class contains static class variables for the predefined condition classes. For exam-
ple, one of them is theil-receiver ; it is aruntime-condition , which in turn is aserious-

condition , which is acondition . Thecondition s the root of the condition-class hierarchy; it

is the supercondition-class of all other condition classes.

As an example, when a message is senitlto, the following condition is created:

Condition ¢ = [Condition for nil class nil-receiver
message "nil receiver"];

The object to which the condition applies is of counsie, since the fact that it isil was the reason
for creating the condition.

Conditions can be issued in two different ways: raised or signaled. When a condition is raised, as in

Condition ¢ = ..;;
[c raise];

execution of the program is guaranteed to not return fromdise method, exiting the program if
that is the only way to achieve the goal. A condition is signaled by invokirgigtal method:

Any
signal;

An invocation of thesignal method may or may not return, depending on the behavior of the in-
stalled condition handlers: if one of them performs a non-local gotcsiinal invocation will not
return.

Condition handlers

To start with an example, the following isv@ain method that | used frequently to observe unhandled
condition signals (until the library option-signals was provided that does the same):

55

Chapter 6. Advanced topics

int (retcode)
main Array arguments

{

ConditionClass cc = condition;

bind ((cc,
{

[[[stdio err] print ("unhandled condition: ",
condition)] nl];
condition;

)]

retcode = [self real_main arguments];

}

Thebind sets up a condition handler, which will be in place while the body ofbihé is active,
in this case during the invocation afal_main . When a condition is raised or signaled, all active
handlers are considered in reverse order from their creation.

Each handler in &ind is a two-expression tuple; multiple handlers are separated by semicolons. The
type of a handler is

(ConditionClass, All)

The first element is &onditionClass , indicating to which kind of conditions the handler applies.

In the example, the condition classdsndition , but a variable with a different name is used to
denote it. The reason for this is the fact that within a handterjiton is the name of the condition

that is being passed. In the example, a handler is installed that matches any condition with condition
classcondition , or any subcondition-class thereof.

The second element of a handler is an expression that will be executed to handle a condition. The
condition is available in the implicit argument to the handler:

Condition condition;

A condition handler can do one of three things:

1. Let the condition pass: in this case the handler decides that the condition is not interesting after all,
and that the condition must continue to search for a handler that is willing to handle it. Searching
continues with outstanding handlers further on the stack.

A handler shows its desinterest by returning tloediton object, as is done in the above
example.

2.Handle the condition: the handler returns any object, just notthedition being handled.
What the value that is returnedeansdepends on the kind of condition. In this case, signaling
the condition will finish and the invocation of thignal of the condition will return with the
value returned by the handler. See below for an example of this usage.

3. Perform a non-local goto, by throwing some value at soaten tag.

56

unwind

signal

Chapter 6. Advanced topics

The above description is valid for a condition that is signaled. If a condition is raised, cases 1 and 2 are
not discerned (and handled like case 1): if a condition is raised, some handler somewhere along the
line must perform a non-local goto, or the program will exit when it has run out of possible handlers.
A handler can ask a condition whether it is being signaled or raised by invokiraisits method,

which returns a boolean.

Theunwind expression guarantees that some protection code is executed, either when the body ex-
pression has been evaluated, or when the stack frame is cleared because of a non-local goto. In the
following example, theinwind ensures that thile is closed no matter what happens:

File file = [File open ..];
unwind ([file close])

(
/* Do something with the FILE. */

ey

D

The value of theinwind expression is the value of the body.

example

This section presents an example in which conditions are used to give the user control over what
happens when a file can not be opened. This setup is only possible because the stack is not unwound
while a condition is handled, i.e., because conditions can not only be raised but also signaled.

Suppose a (fictuougeadOnlyFile object is opened and created using this method:

ReadOnlyFile (the_file)
open String filename

{
the_file = [[self alloc] initWithFilename filename];
if (![the_file open])
return nil;

}

Thus, opening a file first creates a new object for the given filename, and then lets the file open itself.
The implementation of thepen method could look like this; hopefully the methods being invoked
have descriptive enough names for their missing implementation to not be a problem:

boolean (success)
open
{
for (:;)
{

57

Chapter 6. Advanced topics

[* Try to open, and return TRUE upon success. */
[self attempt_to_open];
if ([self is_open])

return TRUE;

/* See if we can get an alternative filename. */
Condition ¢ = [Condition for self class file-open-problem
message [self strerror]];
String alternative_name = [c signal];
if (lalternative_name)
{
/* The condition was not handled. */
return FALSE;

}

/* Make the ALTERNATIVE_NAME our new name. */
[self set_name alternative_name];

}

This method will try to open the file, getting alternative names as long as they are supplied, and finally
returnTRUEUpoON success, GrALSE upon failure.

We could use the mechanism provided by HeadOnlyFile class in a program to offer the user the
possibility of specifying an alternative filename, as shown in the following code:

/* Setup a handler for FILE-OPEN-PROBLEM conditions. */
bind ((file-open-problem,
{
/* Retrieve the file object to which the condition applies. */
ReadOnlyFile file = [condition object];

[* Describe the problem to the user and prompt for input. */
[[[stdio err] print (“trouble opening: ", [file name])] nl];
[[[stdio err] print ("reason: ", [condition message])] nl];
[[[stdio err] print "alternative (RET for original)? "] nl];

/* Read a line of input. */
String input = [[stdio err] readLine];

[* If the input is an empty line, return NIL, indicating that
we did handle this condition, but that an alternative
flename was not entered. Otherwise, return the filename
entered by the user. As long as we do not return the
CONDITION object, we will have handled this condition. */
[input length] > 0 ? input : nil;
)

{
file = [ReadOnlyFile open "/foo/bar"];

58

Chapter 6. Advanced topics

b

Below are two example runs; the program attempts to open the file and prints the value that is returned
before exiting:

$./rofile foo

trouble opening: foo

reason: No such file or directory
alternative (RET for original)?
bar

trouble opening: bar

reason: No such file or directory
alternative (RET for original)?

nil

$.Irofile foo

trouble opening: foo

reason: No such file or directory
alternative (RET for original)?

rofile

#<ReadOnlyFile 00201700 name=rofile>
$

Glueing TOM and C

At the lower levels of abstraction, it is often necessary to glue code written in one programming
language to code written in another. Most languages can interface to C and, in fact, the TOM compiler
translates TOM code to C code. Therefore, TOM provides extensive support for interaction between
TOM code and C code.

C functions for TOM methods

There are two ways of mixing C code with a TOM program. One is straightforward and could be

called elegant, certainly with respect to the other one, which is a hack. The straightforward mix of
TOM code and C code is by implementing TOM methods in C. To inform the compiler of this setup,

the method is qualifiedxtern

extern double
cos double arg;

To a TOM compiler, this declaration doubles as a definition: a method dedsated can not have

a method body. Though the actual C (or other language) function implementing this method is beyond
the control of tesla or tomc, it is mandatory that the function is provided, or the resulting program will
not link.

59

Chapter 6. Advanced topics

To implement theos method in C, we need to know a little more about the name of a C function that
implements a given method. In general, the C function name of a method has the following structure:

ic_unit_extension-name_mangled-selector

where each element has the following meaning:

This isi for an instance method;for a class method.
unit

The name of the unit containing this method definition. If the method is defined in a class, it is
the unit containing the class. If the method is defined in an extension, it is the unit containing the
extension, which is not necessarily equal to the unit containing the class.

For example, théo unit defines @roxy extension to the&tate class, which itself is defined
in thetom unit. For methods defined in this extension, tiné element will betoo , nottom.

extension-name

This is the class name for a method defined in a class, i.e., maieextensioyor the composite
nameFoo_Bar for theBar extension of th&oo class.

mangled-selector

This is the mangled selector name, i.e., the name of the selector after it has been mangled to fit
the restrictions imposed on a C identifier: all characters that are not allowed in such an identifier

are replaced by an underscore ‘_'. Given the kinds of characters that can occur in a selector
name, this means that every (', *), *-’, or .’ is replaced by an * .

Selector names

Before we can continue implementing thetern method, we need to know how the name of a
selector is constructed. This is best explained starting with the method that is invoked when a message
with that selector is sent to an object. Supposectize method is invoked, then the selector contains

its namecos, and an encoding of its return type and argument type. Table 6-1 lists all TOM types
and for each type the character that is used to encode that type.

Table 6-1. type encodings

type encoding type encoding type encoding
void v int i pointer p
boolean o long I selector s
byte b float f reference r

60

Chapter 6. Advanced topics

type

encoding

type

encoding

type

encoding

char

Cc

double

d dynamic X

The selector name is made up of method names and encoded argument types, preceded by the encoded
return type. Each type is enclosed in parenthesis. The selector name of our double refogning
method accepting a double argument becomes:

(d)cos(d)

A few words need to be said about the reference and dynamic types in_Tgble 6-1. Féfsteace

is not a TOM type: there is not a type in the language that has the concrete syntactic representation
reference . A reference stands for a reference to an obgeay,object. Thus, at the level of selectors

and selector names, all objects are equal.

The encoding of the dynamic type only occurs in method names (in the mangled selector part), never
in the selector of a message. For example, the name of the function implementing the instance method

void
print dynamic a;

of theBar class in theoo unit will be
i_foo_Bar_v_print_x_

but when a message is sent that will invoke this method, the actual arguments of the message are
known, and the selector passed to the method will convey their types. Thus, when invoking the method
like this:

foo.Bar mybar = ..;
[mybar print FALSE];

the selector that is passed to the method wil{\grint(o) , showing that for the dynamic formal
argument, the actual argument passed is a single boolean.

As an example of the encoding of a tuple, for the following invocatioprint
[mybar print (3.14e0, 9876543210, FALSE, 1234567890, 1.6d-19)];

the selector passed to the method will be

(v)print(floid)

Tuples can of course also occur in a method name, and hence, in mangled form, in the name of a C
function implementing that method. The following method

extern double
atan2 (double, double) (x, V);

responds to the select@)atan2(dd) , and the C function implementing this method in tath
class of theClibrary unitisc_C_Math_d_atan2_dd_

61

Chapter 6. Advanced topics

Type names

Before we can implement ogbs method, we must know how to denote the TOM types if C-Table
[©6-2lists the TOM types and for each type the equivalent type to be used in C. These types are defined

in <tom/trt.h>

Table 6-2. C types for TOM types

TOM type C type TOM type C type TOM type C type
void void int tom_int pointer void *
boolean tom_byte long tom_long selector selector
byte tom_byte float tom_float reference tom_object
char tom_char double tom_double |dynamic

The triple dots as the C type for the TOM dynamic type actually refer to the triple dots used ina C
function to denote a variable number of arguments and the usesidairg.h> . However, that is a
very hairy issue we will not delve into right now.

External implementation

From the information in_Table §-2, we are finally able to write oo method, supposedly for the
Math class of theC unit:

#include <math.h>
#include <C-r.h>

tom_double
c_C_Math_d_cos_d_ (tom_object self, selector cmd, tom_double arg)

{

return cos (arg);

}

The conversion from the tom_double arg to the (C) double accepted by the fusetiamhandled by
the C compiler, as is the conversion of the resultayf to the value that is returned. (On all machines
currently supporting TOM, a tom_double is simply a double, making the conversion rather easy.)

A few things can be said about this code:

« The inclusion of<C-r.h> isn’t strictly necessary in this example, but in the case of less triv-
ial implementations, including the filenit-r.h is mandatory. This file is the resolver output and
contains vital information about the classes and selectors that are definedunithi¢ also in-
cludes the resolver output of the units on whichtiné depends, plus the TOM runtime header file
<tom/trt.h> . The latter is mandatory (for the C equivalent definitions of the TOM types). Often
you will also find use for including:tom/util.h> which contains less elementary information
for interfacing with TOM code and the TOM Run Time library (trt).

62

Chapter 6. Advanced topics

- The first argument to a method implementation is always the (implicit) receiver object. In C you
should always declare the type to be a tom_object, even if you think to know that it will be some-
thing more specific. The tom_object type is pretty opaque, being defined as follovisnittrt.h>

typedef struct trt_instance

{

[* The class of this object. */
struct trt_class *isa;

[* The flags needed by the runtime. */
tom_int asi;
} *tom_object;

Theisa is the pointer to the class of the object; e field is used by trt to store (1) whether

the object is an instance, a class, or a meta class, and (2) information for the garbage collector.
Any instance (or non-static class) variables of the object are not directly available by dereferencing
self ; afuture TOM highlight will shed light on how that can be achieved.

« The selector argumentnd is the second implicit argument to every method invocation.arbeis
the first ‘real’ argument.

The hack

As promised at the start of this highlight, there also is a hack to write functionality in C. This hack
uses the fact that the output of Tesla actually is C.

Normally, the TOM compiler ignores anything enclosed witkino> and</foo> , regarding it as
comment (which does not nest). The flexibility of this commenting scheme is that special comments,
i.e., ‘comments’ with more meaning than just some remark on the code to follow, can be qualified.
For example the TOM documentation generator extracts comments enclosgdinand</doc> ,
regarding them as documentation on the class, variable, or method to follow. It skips all other com-
ments, including th©right> and</copyright> at the top of the TOM library units source
files, since copyright information is not interesting for the reader that wants to learn how a certain
class works.

The single exception to the above rule is that text enclosed withand </c> is not taken to be
comment. Instead, the enclosed text is copied verbatim to the output, implying that the text better be
literal C code, which is actually what it was meant for.

Ourcos method can now be written as follows:

<Cc>
#include <math.h>
</c>

<doc> Return the cosine of the argument {arg}. </doc>

double (result)
cos double arg

63

Chapter 6. Advanced topics

{

<Cc>
result = cos (arg);
</c>

}

Again, a few notes:

- Do not use any nasties like ther&urn statement in your C code. Instead, assign a value to the
return value of the method, as is done in this example.

+ You can include header files likenath.h> (at the global level; not within a method) but you can
not include the resolver output as was done with the external implementatios of his has some
implications that increase the complexity of including C code like this.

- If you C code starts with a declaration, it should start its own block.

« The C code is included literally, so it does not need to be a fully delimited entity. For example, the
following implementation otos is ‘legal’:

double (result)
cos double arg

{

<c>

{

double a = arg;
result = cos (arg);
</c>
return;
<c>

}

</c>

}

Interaction with the Garbage Collector

Method forwarding

Forwarding mechanism

One of the things that make dynamic binding an interesting approach to method dispatching (i.e.,

64

Chapter 6. Advanced topics

the decision which code to invoke to handle a given message) is the ability to forward a method
invocation. A message is forwarded when the receiver object does not provide an implementation
of the method denoted by the message. In this highlight, the forward mechanism of TOM will be

explained.

Every method has two implicit argument®lf andcmd. The objeckelf is the ‘current object’; it
is the receiver of the message that lead to the method invocation. The argumésthe selector of
that message.

When an object does not implement a method,séit andcmd arguments are used to decide how
to respond to the message.

« The receiver is asked for ifsrwardDelegate . If an object other thanil is returned, the mes-
sage is simply resent to that object. This is the mechanism of choice when a lot of methods are to
be delegated to few different objects.

The forwardDelegate method is implemented by the instance All, and thus (by convention)
implemented by all classes and instances. The default implementation simply réturns

All
forwardDelegate selector sel

{
= nil;

}

« (Skip this item if you don’t understand it.) If the object implements the method

InvocationResult
forwardSelector selector sel
arguments pointer pap;

then that method is invoked, witlel being the selector of the message being forwardedpapd
a pointer to a va_list for the arguments in the message IivoeationResult that is returned
defines the values to be returned from the invocation that is being forwarded.

Note that an object implementing a method is different from an object respodintRUEWhen
askedespondsTo . The latter can be overridden while the former is a direct check, which is much
faster.

This seemingly nasty low-level approach is used for fast dispatchitog &emoteProxy method
invocations and for invocations on curriggn.Invocation objects.

- With everything having failed so far, the whole invocation is packed into a newly créated
cation object, and sent to the receiver withfa@wardinvocation method. The receiver can
then decide what to do with it. The default implementation by the instance All raiseg@am-
condition for the selector and target of thevocation

InvocationResult
forwardlnvocation Invocation invocation

{

[[SelectorCondition

65

Speed

Chapter 6. Advanced topics

for self class program-condition
message "unrecognized selector”
selector [invocation selector]]
raise];

}

The forwardlnvocation mechanism can also be used to mimic the functionality offéhe
wardDelegate method. If theforwardDelegate would return the objectny_delegate , the
following method would provide identical functionality:

InvocationResult
forwardlnvocation Invocation invocation

{

= [invocation fireAt my_delegate];

}

Everything comes with a price, especially flexibility.

I've done some speed tests (on a PII/266, Debian 1.3.x, gcc 2.7.2.1) with various ways to invoke a
method, with various number of arguments, with the results shown in the table below.

. Xis a direct method invocation,

[foo do (1, 2)];

« pis aperform,

[foo perform selector ("(v)do(ii)") with (1, 2)];

« disthrough dgorwardDelegate . The invocation looks like that of but it is invoked on an object

that does not implement the method, but does provide the following method (an instethae of
does implement the desired method).

Sub
forwardDelegate selector s

{
= fwd_delegate;

}

« iisthrough dorwardinvocation . Similar tod, but instead oforwardDelegate , the following
method is implemented:

InvocationResult
forwardlnvocation Invocation invocation

{

= [invocation fireAt fwd_delegate];

}

66

Chapter 6. Advanced topics

Table 6-3. Speed of method invocation

how #inv time

0 1 2 3 4 5 6
X 1078 12.58 12.93 12.58 12.53 13.69 14.00 13.91
p 1077 11.15 11.77 12.74 13.80 14.88 15.63 17.32
d 1077 11.62 12.75 13.75 15.11 15.81 16.61 18.52
i 1076 15.96 17.44 17.80 18.14 18.51 18.87 19.22

* |n [@ble6-B, using thenorerows attribute causes jade/html to produce incorrect tables, and jade/tex to die.

In Table 6-B, ‘how’ describes how the method is invoked, ‘#inv’ is the number of invocations per-
formed in the given time, and ‘time’ is the CPU time needed to run the test for the indicated number
of arguments.

Note that for everyorwardinvocation dispatch, amnvocation object and armnvocationRe-

sult is created, and approximately half the time taken by the test runs is spent in garbage collecting
those objects. Also note that the mechanism underlggfprm with andforwardDelegate
does not creatmvocationResult objects for void methods, as was the case in the test.

The numbers come down to the following: in the time that you can fdowlardinvocation ,you
can do 10forwardDelegate calls or invocations througperform with , and 100 direct method
invocations.

| don’t know if these numbers are good or bad; | don’t have numbers to compare them with (maybe
testing Objective-C Rhapsody on a PI1/2667?). It does show, that @singrdDelegate is much

faster than having amvocation object be created and forwarding that. Which is what it was sup-
posed to do. (And it can probably be made much faster when usimgjltin_apply_args in
trt_forward , instead of going througperform_args .)

67

II. TOM: The Libraries

68

Chapter 7. The TOM Runtime Library

The TOM Runtime Library is the library that enables TOM programs to run. It contains the data
structures needed for every method invocation; it performs object allocation, garbage collection, etc.

In C, all functionality of TOM and the TOM runtime can be obtained by includitagn/util.h>
This will also include the header generated by the resolver for the tom unit.

Program startup

From the start of a TOM program, the following sequence of actions takes place:

. If the program was not statically resolved, build the method dispatch tables and other runtime
structures needed but not built by the resolver. When run, this installs what the GNU Objective-
C runtime very nicely calls the ‘premature’ dispatch table for each object. Upon invocation of a
method through said table, the actual dispatch table will be built and put in place.

« Collectthe arguments to the program, excludingdgdv[0] intotom.Runtime.all_arguments ,
usingtom.ByteString objects . Set themm.Runtime.program_name andtom.Runtime.long_program_name
from argv[0]

- Initialize thein , out , anderr streams ofom.stdio

- Invoke the load imps, i.e. every class method with a signature matehitigdoad Array ar-
guments , with the arguments collected from the command line. A load imp is allowed to recognize
options and remove them from the arguments. It is customary for such options to start with a colon
(‘) instead of a dash (*-").
- Store the array of remaining argumentsdm.Runtime.arguments
« Invoke the following method of thelass tom.Runtime
int
start (All, selector) (object, sel)
arguments Array arguments;
where thesel is the selector for the main method to be invoked, which normallytisnain
Array arguments . Theobject is the receiver of this message, normally a class object.

« When the previous method invocation returns, all open streams are flushed and the value it returned
it used as the exit code.
* [Streams are not yet flushed.]

C names for TOM types

lists the C types to use for the TOM types.

69

Table 7-1. C names for TOM types

Chapter 7. The TOM Runtime Library

C TOM

void void

tom_byte byte boolean

tom_char char

tom_int int

tom_long long

tom_float float

tom_double double

void * pointer

selector selector

tom_object any object reference
Selectors

In the runtime library, a selector is identifyable by a string which is called the selector’'s name. This
name consists of the name parts and an abbreviated form of the argument and return types. The
abbreviated type names are:

Table 7-2. Selector type encodings

char type

Y, void

o boolean
b byte
c char

int

long

float

double

pointer

nw|l ol ol

selector

-

object reference

X dynamic

The following table shows examples: for several method declarations the name of the corresponding

70

Chapter 7. The TOM Runtime Library

selector.

* [Grammar desired.]

Table 7-3. Example selector name encodings

method selector

int value; "(iyvalue"

void setValue float d; "(v)setValue(d)"
(Foo) bar (int, double) (a, b) with: "(r)bar(id)with:(i)"
int ¢ = 0;

* [Actually, this is the future syntax. Currently, it is ambiguous, hence replaceable.]

In C, a selector is defined by a struct; Téteuct selector is the direct implementation of the
TOM selectors.

typedef struct selector

{

unsigned int sel_id;
struct name name;

struct trt_selector_args *in, *out;
} *selector;

sel_id

This is the unique identity of a selector. All selectors have such an identity in the closed enumer-
ation of all selectors. Every two selectors with identical name, argument types and return types
have the same identity. If no dynamic loading has taken place, the following is true for any two
selectors andb:

* [Actually, it isn't any longer.]

a->sel_id == b->sel_id <> a ==

name

the name of the selector. This has two fielddieing the zero terminated string, aled being
its length.

out

the selector argument descriptions for the arguments foe(nd return value frono{it) methods
denoted by this selector.

71

Chapter 7. The TOM Runtime Library

Message dispatching

This section explains how messages can be dispatched, i.e. how the implementation of a method can
be invoked, given the message.

A method is translated by the compiler to a C function with essentially the same arguments as
the method, with two mandatory additions and some additions depending on the return type of the
method. For the method

(boolean, Any) next
defined for thenstance tom.Enumerator , the C function implementing this is

tom_byte

i_tom_Enumerator_or_next (tom_object self,
selector cmd,
tom_object *retl)

@end example

As can be seen, the first element of the tuple return type is the type returned by the implementation C
function. Such a C function implementing a method always has two ‘implicit’ first argumssifts:

being the object receiving the message, amd being the message sent. Following these two are

the ‘normal’ arguments to the method, which are none in this case. Finally, any of the remaining
return values are to be returned in the pointer arguments supplied after the normal arguments. In the
example, a pointer for returning the second tuple element is provided.

A message is dispatched by invoking the method implementation for the @®éncmd) pair.
The lookup of the implementation, i.e. the pointer to the C function, can be done in three different
ways:

lookup
Call the functiontrt_lookup ~ with the receiver and the selector to be invoked (i.e. the values to
be passed fagelf andcmd). trt_lookup returns a function pointer to the method implemen-
tation. Invoke that function with the arguments.

direct
A direct lookup is equivalent to inlining thet_lookup ~ function. This is a rather unwise way
of invoking a method as it considerably increases code size.

send

When usingtrt_send to dispatch a message, the functiansend is invoked with all the
arguments to be passed to the method implementatiosend will perform the lookup and
jump directly to the implementation.

These different dispatching mechanisms can be selected by an option to tomc. These options are not
yet implemented in tesla, the new TOM compiler. When using tesla, they must be selected when con-

72

Chapter 7. The TOM Runtime Library

figuring trt. They are described here for explanatory purposes; never implement any of these directly
in your C code; the next section explains how to do that portably.

Sending is the preferred way of dispatching messages, though possibly not present on all TOM im-
plementations as it involves an assembly language routine. Also note that there are dependencies of
the applicability of some dispatching mechanisms. For example, it is impossible to use sending on
dynamically loaded code dmppa-hpux machines. This is not a TOM feature but due to the inter-
space stubs needed by the hpux shared library interspace calls, added to the fact that a callee stores
the return program counter in the stack frame of the caller.

When doing profiling on a TOM program, all code should really use the lookup way of dispatching
instead of sending to dispatch. Otherwise, all methods will be reported to only invaend , and
trt_send will be reported as the culprit which invoked every method and thus effectively void the
use of the call graph.

Messaging from C

To invoke a method of a TOM object, use thRT_SENDmacro. For example, to retrieve the length
of an arraya:

tom_object a = ..
tom_int len = TRT_SEND (, a, SEL (_i_length));

The second argument TRT_SENDis the receiver of the message. The third argument is the selector
to be sent. A selector is an invocation of tBEL macro, with as argument the selector's name with
any nasty characters replaced by an underscore.

A more elborate example shows almost all pitfalls when uSiRG_SENDIn this example the method
(int, float) split float f is invoked, which in TOM would be written as

SomeClass receiver = ...;
float fractional, number = ..;;
int integer;

(integer, fractional) = [receiver split number]

is invoked from C as follows:

tom_object receiver = ...;

tom_float fractional, number = ...;

tom_int integer;

integer = TRT_SEND ((tom_int (*) (tom_object, selector,

tom_float, tom_float *)),
receiver, SEL (_if__split_f), number, &fractional);

73

Chapter 7. The TOM Runtime Library

The first argument tdRT_SENDS a cast to the type of the function actually being invoked. This cast

is mandatory if the return type of the function (implementing the method) invoked is not a tom_int.
The argument prototypes in the cast are mandatory when needed to prevent the C compiler from doing
undesirable type conversions due to it not having seen a full prototype of the function being invoked.
For instance, usually, tom_float is simply a float, which the compiler will promote to a double when
passed as an argument for which the prototype has not been seen.

This example also shows that for a method returning a tuple, the first element of the tuple (or the first
element thereof in case itis a tuple too (or...)) is actually returned from the C function implementation,
and any remaining elements of the tuple returned are stored in variables the address’ of which has been
passed as ‘invisible’ trailing arguments.

More types

This section lists various types that are used by the runtime library.

struct name

struct name

{
char *s;
int len;

kh

Thes points to the zero-terminated C byte-string holding the namelérhés the length of.

trt_selector_args

struct trt_selector_args

{

int num;

enum trt_type_encoding args[0];

h

A trt_selector_args describes the arguments to or return value from a method. In this context,

all values are de-tupled and concatenated. Thus, a selector accepting an int and a float has the same
argument description as a selector accepting a tuple (int, float). For the arguments, this excludes the
implicit two first argumentsself andcmd.

num

The number of entries iargs .

74

Chapter 7. The TOM Runtime Library

args

The description for each flat argument.

enum trt_type_encoding

enum trt_type_encoding

{
TRT_TE_VOID,
TRT_TE_BOOLEAN,
TRT_TE_BYTE,
TRT_TE_CHAR,
TRT_TE_INT,
TRT_TE_LONG,
TRT_TE_FLOAT,
TRT_TE_DOUBLE,
TRT_TE_POINTER,
TRT_TE_SELECTOR,
TRT_TE_REFERENCE,
TRT_TE_DYNAMIC,

h

Thetrt_type_encoding is used in the definition of argument and return types of selectors.

Functions

This section describes functions and macros defined by the TOM runtime, or any of its C header files.

byte string_with_c_string

tom_object
byte_string_with_c_string (const char *s);

Return a newly allocated instancetofn.ByteString holding the characters from the zero-terminated
strings. Obviously, the trailing zero is not contained in the returBgString

byte_string_with_string

tom_object
byte_string_with_string (const char *s, int len);

75

Chapter 7. The TOM Runtime Library

Return a newly allocated instancetofn.ByteString holding the firsten characters pointed to by
S.

trt_assign_local var

TRT_INLINE void *
trt_assign_local_var (void *object)

This function must be invoked if thebject has just been assigned to a local variable and it is to live
over a method invocation. Note this is only necessary ithe stack protection policy implemented
by the garbage collector (configured when building the TOM tool§RsPROTECTas opposed to
SP_MARKseeconfig/default.h andconfig/target.h), so, probably (ahem), itisn’t necessary.

* [Obviously, the type of the argument should be tom_object instead of void *.]

trt_assign_object_var

TRT_INLINE void *
trt_assign_object_var (void *object, void *value);

This function must be invoked if the object pointed todayue has just been assigned to an object
variable of theobject . This is needed in case the garbage collector performs non-atomic runs. Thus,
if you're writing library code in C, younustuse this function. The compiler outputs calls to this
function if the flag-fincremental-gc is provided on the command line (@pxref{Invoking tomc}).
This feature is not supported yet in tesla.

* [Obviously, the type of the two arguments should be tom_object instead of void *. However, since debugging a TOM program
currently means debugging the (not so unreadable, to the trained eye at least) C code output by the compiler, the compiler
types each object in the output to its C struct (as far as the compiler can know the layout at compile time). Hence, void * is
used in some places where really tom_object should be used, to avoid numerous casts or warnings.]

trt_ext_address

void *
trt_ext_address (tom_object self, int extension_id);

trt_ext_address returns a pointer to the state information of the obpett for the state intro-
duced by the extension with the identiytension_id . This is the only legitimate way to obtain
a pointer to some state held by some objétie only exception to this rule is the state information
introduced by the State class (or instance), which, by definition, resides at offset 8effom

76

Chapter 7. The TOM Runtime Library

trt_selector_args_match

int
trt_selector_args_match (struct trt_selector_args *a,
struct trt_selector_args *b);

Return 1 if the number and types of the elements andb match, or 0 otherwise.

Normally, this test is very fast, since the resolver guarantees that for every pair of selector argument

descriptionsa andb, if trt_selector_args_match returnsl, thea == b. However, in the con-
text of dynamic-loading, selector argument descriptions can guaranteed to be unique, thus making
trt_selector_args_match slightly more expensive.

trt_selector _named

selector *
trt_selector_named (char *s, int len);

Return the selector whose name matches the name held in tHerfirbiytes pointed to bg. Return
NULLif such a selector does not exist.

trt_type_name

char *
trt_type_name (enum trt_type_encoding type);

Return a zero terminated C string holding the name ofythe . If the type is not a valid value, the
string"<unknown type %d>" is returned, with the numeric value of thge replacing thetod

* [In the case of an unknown type being returned this function leaks memory, since the string returned is malloced.]

xmalloc

void *xmalloc (unsigned int n);

void *xcalloc (unsigned int n, unsigned int m);
void *xrealloc (void *p, unsigned int n);

void xfree (void *p);

Use these allocation manipulation routines instead of the x-less counterparts they are wrapping, since
the ‘X’ is a clue on some machines.

77

Chapter 8. Unit tom

Thetom unit is that standard TOM library.

File tom/All

class tomJAI]

TheRIT] class does not serve a purpose. It is the stat@&ginstance which is inherited by both the
class and instance, and, supposedly, by all objects not inheritingStaim .

instance tom. All_]

inherits

State supergondiiions |, Constants_|

variables

const TRUE = !0;

The boolean truth.

const FALSE = ITRUE;

The boolean non-truth.

const YES = TRUE;

An alternative name forRUE

const NO = FALSE;
An alternative name foFALSE

methods

Bring]
description;

Return a string informally describing this object.

This returns the result of having the receiveite itself into a newString_| which is subsequently
returned.

boolean (result)

eq B other
post
self == other == result;

78

Chapter 8. Unittom

The selector equivalent of ‘==", i.e. the returnesbult is TRUEIff the receiving object and the
other object are the same object.

The postcondition states that this method is not overridable.

boolean (result)
equal id other
post
self == other -> result;

ReturnTRUEwhen the receiving object considers itself equal to the other object. For instance, two
objects holding the same value will retUrRUE

The receiving object should be able to assumeother object is of the same kind, or at least shares
with it a common superclass, as in the case of, for instgbearString | andByteString__] which
are both subclassesBfring_] and can compare with each other.

As stated by the postcondition, an object musebeal to itself. This knowledge may be used by a
caller to prevent a method invocation.

int
hash;

Return a hash value for the receiving object. The default implementation returns some bit pattern
deduced fronself

Two distinct objects considering themseleggal should also return the sarhash value.

int
hashq;

Hash the address of the receiving object. For classes not redefiashg this performs the same
function.

id (self)
self;

Return the receiving object.

deferred
write S;

All objects, even classes, know how to (descriptively) write themselves to a stream.

A default implementation of this method is provided by class and instance.

deferred boolean
classp;

ReturnTRUEIff the receiving object is a class object. An implementation for this method is provided
by theBfafe] class and instance.

79

Chapter 8. Unittom

boolean
isKindOf class (Btate]) a_class;

ReturnTRUEIff the class of the receiving object is a subclass ofdles .

deferred class (id)
kind;

Return the class of the receiving object.

boolean
respondsTo selector sel;

ReturnYESIff the selectorsel can be safely sent to the receiver. The default implementation only
checks whether the receiving object provides a direct implementation afetheany checking
through an alternativierwardDelegate ~ should be performed by the object itself.

[svim]
forwardDelegate selector sel;

Return an object of which the method indicated by the seleetoishould be invoked. This method is
invoked if the receiving object does not directly respondeio. The default implementation returns

self . The object returned could be a delegate which is to act upon behalf of the receiving object for
the intended call of the selectss! .

IMVOrANnNRESIT——1
forwardlnvocation [Ovocation 1 invocation;

Return the result of forwarding thievocation , for example by firing it at an appropriate object.
The default implementation raisep@gram-condition SeleforCondition).

dynamic
perform selector sel
arguments = nil;

Send the receiving object a message with the seleetorand the, possibly unboxedrguments .
The number of elements afguments must match the number of arguments dictated by the selector.

Unboxing the arguments means that ifian argument is needed, th& at int method will be
used to retrieve the argument from thguments , possibly resulting in the object retrieved being
asked for itgntvalue

dynamic
perform selector sel

with dynamic arguments;

Send the receiving object a message with the selaetorand thearguments . The number ofr-
guments must match the number of arguments dictated by the selector.

80

Chapter 8. Unittom

If the selectosel accepts more than one argumemguments should be a tuple. The tuple-ization
of the actual arguments to the selecter and the elements of theguments tuple is ignored.

Chream
performinThread selector sel
with dynamic arguments;

Like perform with but create a new thread for the performance. Return the newly created thread or
nil upon failure.

boolean
invocationp;

ReturnYESiff the receiving object is ajmvocafion _|. Only [nvocafion | objects are supposed to
returnYES

dynamic
valueOfVariableNamed name;

Retrieve the value of the variable with the indicatedhe. If there is more than one variable with the
same name and expected return type, the first is returned.

void
setValue dynamic value
ofVariableNamed name;

Set the value of the variable namesine in the receiving object to thealue . Itis an error if the type
of the value does not exactly match the actual type of the variable: no conversion is performed.

int
typeOfVariableNamed name
from Extension 1 ext

pre
[[self stateExtensions] memq ext] != nil;

Return the type of the variable nameaime as introduced by the extensiert . This returns one of
the TYPEDESC_*Consfanis 1.

By
valueOfVariableNamed name
from Exiension 1 ext

pre
[[self stateExtensions] memq ext] != nil;

Return the boxed value of the variable namache as introduced by the extensiert .

extensionNamed name
inherited: boolean check_supers = NO;

81

Chapter 8. Unittom

Return theExtension] object of this object for the extension namede. If name == nil , the
main extension is returned.

Indexed
extensions;

Return an array of the extensions of the receiving object, not including the extensions introduced by
superclasses.

Moexen
allExtensions;

Return an array of all extensions of the receiving object. This includes the extensions introduced by
superclasses.

Miexen
stateExtensions;

Return an array of state introducing extensions of the receiving object. This includes the extensions
introduced by superclasses.

void
throw dynamic value;

Throw execution to the catch specified for the receiving object, returningathe . If the value is
void , the default value for the type to be returned by the catch is returned.

void
preconditionFailed selector sel;

This method is invoked for a failed precondition of a method invocation of the receiving object.
The method is identified by theelector sel . The default implementation raisesandition-
condition Selecorcondiion 1.

Method precondition checking is enabled is the optmrpre is provided on the program’s com-
mand line. The code for precondition checking is normally compiled in by the compiler. This code is
omitted by passing théno-checks or -fno-pre-checks option to the compiler.

void
postconditionFailed selector sel;

This method is invoked for a failed postcondition of a method invocation of the receiving object.
The method is identified by theelector sel . The default implementation raisesandition-
condition Selecrorcondifion 1.

Similar to precondition checking, postcondition checking is enabled bycthpost option on
the command line of this program and not providifigo-checks or -fno-post-checks to the
compiler.

protected void

82

Chapter 8. Unittom

unimplemented selector sel
message: message = nil;

Moan about the selectsel not yet having been implemented by the receiving object. This raises an
unimplemented Selectorcondition .

protected void
shouldNotImplement selector sel;

Contrary to what the inheritance tells you aboutshiector sel being invokable for the receiving
object, that object thinks otherwise.

protected void
subclassResponsibility selector sel;

Moan about the receiving object defining a method for the selsetorbut actually the implementa-
tion of the method by the object thinks it should be implemented by a subclass.

boolean
consp;

ReturnTRUEIff the receiving object is cell. The default implementation returN®

OutputStrean
writeListElement S;

Finish outputing the list, of which the receiving object is the tail, to the streaihe default imple-
mentation writes itself as a dotted cdr at the end of the list.

deferred boolean
persistent-coding-p;

ReturnYESIff the receiving object is a persistent object. This is significant for distributed objects,

where class objects afB#lector] instances must be persistent across different invocations.
pointer
address;

Return the address of the receiving object as a pointer. This is here solely to be able to print the address
of objects, for debugging purposes.

boolean
coding-permanent-object-p;

ReturnYESif the receiving object should be maintained in the permanent object store when coding.
This does not matter for archiving; it makes a difference for DO. Class objec
TRUEfor this; the default implementation returBALSE

void
dump (boolean, boolean) (allow_self, allow_simple)

83

Chapter 8. Unittom

level int level;
Dump the graph of which the receiving object is the root to stderr.

void
dump;

Like void dump (boolean, boolean) , allowing self/simple printing and doing infinite recursion.

boolean
dump_simple_p;

Return TRUEff the receiving object can be dumped simply. This will be true for class objects,
strings, numbers, etc. This method is overridderdbwyp_self p . The default implementation re-
turnsFALSE

boolean
dump_self_p;

ReturnTRUEIff the receiving object wants to dump itself instead of having its variables scrutinized.
This is used by collection objects and others which emplaiyiter typed variables. The default
implementation returnBALSE

OutputStreanm
dump_simple s;

Dump the receiving object to the streanmsimply. This is only ever invoked if the object retumss
for dump_simple_p . The default implementation simply pringslf to the stream.

protected void
dumpSelf done
indent prefix
simple boolean allow_simple
level int level

to OupuStream] s;

Have the receiving object dump itself. Only ever invoked if it returR&Efor dump_self p . The
default implementation invokeshouldNotimplement

deferred protected void
dump done
indent prefix
simple boolean allow_simple
level int level

to pupusSTean] s;
Hard worker fordump.

boolean
gc_dead_p;

84

Chapter 8. Unittom

ReturnYESiff the receiving object has not yet been marked alive during the current run of the garbage
collector. Class objects are never dead.

void
gc_mark;

Mark the receiving object as being alive. This method is only needed by the container garbage collec-
tion scheme.

This method is invoked during Garbage Collection. During GC,RbBefime | library is running in
panic mode. If anything goes wrong, for instance a condition is signaled or raised, the program will
abort. Moral: be careful during garbage collection.

File tom/Array
class

is the superclass of all arrays; it is p@lexed Collection |

inherits

State superstate], [ndexed |, G

instance tbm.Array |

variables

public int length;

The number of elements in the array.

pointer contents;
A pointer to the elements of this array.

methods

void
dealloc;

Clean up the memory this array is using.

deferred int
elementByteSize;

Return the size, in bytes, of the elements contained irfin&].

id
initAsCopyOf id other;

85

Chapter 8. Unittom

Get the elements from thher , and invokegself initCopy]

id (self)
initCopy;

Duplicate ourcontents since that is what we own.
id (self)
initWith int n
at pointer addr;

Initialize with the indicated pointer and integer for contents and length.

Ay
member BI] object;

Return the element contained in t@igay], which isequal to theobject

By
memq BI] object;

Like member, but the element is identified on reference equality.

deferred (pointer, int) (address, number)
pointerToElements (int, int) (start, len)

pre
start >= 0 && len >= -1
post
number >= 0 && !number == laddress;
Return theaddress of the first element of the receiving array in the rargtert, len) , and the

number of elements in that range.

void
makeVanishingElementsPerform inv;

Like makeElementsPerform , but allow the element currently messaged to vanish from this array.

File tom/Bag
class

A Bag is aReyed|Colleciion .

inherits

State supergiashTable |, Keyed]

86

Chapter 8. Unittom

instance tom.Bag |
methods

int
at QI object;

Return the number of times the elemeay is present in the bag.

By
at QI object;

Return theobject if presentnil otherwise.

Enmrmerator
enumerator;

Undocumented.

id
initWithEnumerator Fnumerator | €;

Undocumented.

class tom.MutableBag |

inherits

State supersSag,

instance tbm.MutableBag |

methods
void
add REI] object
count int num;

Add theobject num times.

void
add AI] object;

Add theobject

87

Chapter 8. Unittom

File tom/Block

class tom.Block |

inherits

State super$tate], Condifions |, Enumerafor_]

variables

static boolean check_block_selectors;

methods

void
load arguments;

Initialize the static control variables (onépeck_block_selectors up to now).

instance tom.Block |

variables

pointer code;

Pointer to the actual code (a C function).

selector arguments;
The selector of theval method of this block, which includes the formal argument and return
types.

pointer variables;

If this block employs block variables, tlvariables points to a struct holding those variables.

pointer environment;

Pointer to the local variables of the enclosing method that are referenced from this block. This
is not set when the block does not reference its environment; it is cleared when the environ-
ment is exited. A block that uses its environment checks upon entry to its eval method that the
environment is still available.

pointer block_description;

A description of the variables wariables

methods

id (self)

88

Chapter 8. Unittom

initWithCode pointer block_c_function
trigger selector full_arguments
context pointer context
variables (pointer, pointer) (vars, desc);

Designated initializer.
protected boolean (mismatch)

arguments_fail (selector, selector) (formal, actual)
pre

formal != actual;

ReturnFALSE if the arguments in théormal andactual selectors match, or match enough. Raise
a program-condition for a mismatch (and returmRUB. The precondition dictates that the fast
check should be done autonomously.

dynamic
eval dynamic arguments;

Genericeval method. Faster versions, which are specialized on their arguments, are below.

void
eval;

The first of many (similar) type-specifaval methods.

int (result)
eval int al;

Undocumented.

void
eval int al;

Undocumented.

(result)
eval B al;

Undocumented.

(result)
eval;

Undocumented.

(boolean, Eny) (remaining, value)
next;

Undocumented.

89

void
dealloc;

Release the memory used by this block.

void
gc_mark_elements;

Mark the block variables if needed.

void
invalidate;

Be informed that the block is going out of scope, invalidatingetindronment

File tom/BucketDictElement

class tom.BucketDiciElement |
inherits

State supergBucketElement |

instance tom.BuckefDictFlement |

variables

A key;
This bucket element’s key.

public value;
The value in this bucket element.

methods

id
initwith (B0, &) (K, v);

Designated initializer.

void
do BIGck] block;

Apple theblock tovalue and pass toext .

void
doKeys block;

Chapter 8. Unittom

90

Chapter 8. Unittom

Apple theblock tokey and pass toext .

Any
key;

Return thekey , with a suitable type.

By
member BI] k;

Return the value associated with the keyasking thenext element if this element does not match.

The implementation bgucketDictElement |, considers it&ey and returns itsalue .

By
member B k

equal selector cmp;
Like member, but using the selectanp to have the objects compare themselves.

Ay
memq &I k;

Undocumented.

int
add (@O, BI) (ko v);

Add the(k, v) pair to this bucket, if the key is not already present. Return the number by which this
bucket's length has increased.

int
addg (BMC, Ar) (ko v);

Add the(k, v) pair to this bucket, if the key is not already present. Return the number by which this
bucket's length has increased.

(id, int)
remove A k;

Remove the object with the key equalkoReturn the replacement for this element, and the number
of bucket elements that were removed from this bucket list (max 1).

(id, int)
removeq MBI k;

Remove the object with the identical kkyReturn the replacement for this element, and the number
of bucket elements that were removed from this bucket list (max 1).

void
encodeUsingCoder coder;

91

Chapter 8. Unittom

Undocumented.

void
initWithCoder coder;

Undocumented.

(id, int)
gc_mark_values;

Starting with this bucket element, remove the objects of whichvtihge is gc_dead . Return the
replacement for this element, and the number of bucket elements that were removed from this bucket
list.

(id, int)
gc_mark_keys;

Similar togc_mark_values , but consider the liveness of tkey instead of thevalue .

int
rehash;

Rehash the key of the receiving element.

int
rehashg;

Rehashq the key of the receiving element.

File tom/BucketElement

class tom.BuckefElement |
inherits

State supergtaie |

instance tom.BuckefFlement |

variables

public id next;
The next element in this bucket.

methods

void

92

Chapter 8. Unittom

do BIoeK] block;
Apple theblock toself and pass toext .

Ay
member B key

pre
key 1= nil;

Return the value associated with ttey , asking thenext element if this element does not match.

The implementation bgucketElement | considers itself to be both the key and the value.

By
member B key
equal selector cmp
pre
key = nil;

Like member, but using the selectanp to have the objects compare themselves.

By

memq B] key
pre

key = nil;

Like member, but use reference equality instead of #ygal method.

int
addElement id elt;
Add theelt to this bucket, if it is not already present. Return the number by which this bucket's
length has increased.
int
addgElement id elt;

Add theelt to this bucket, if it is not already present. Return the number by which this bucket's
length has increased.

(id, int) (replacement, decrease)
remove id elt

post
ldecrease -> replacement == self;

Remove theelt from this bucket, if present. Return the number by which the length of this bucket
has decreased, and the replacement remainder of the bucket list.

(id, int) (replacement, decrease)
removeq id elt

93

Chapter 8. Unittom

post
ldecrease -> replacement == self;

Remove theelt from this bucket, if present. Return the number by which the length of this bucket
has decreased, and the replacement remainder of the bucket list.

void
resizing_feed ht;

For resizing a hashtable, feed this element and those following elements, to the hashtable using the
hashtable’sesizing_add

void
resizing_add id n;

While resizing a hashtable, accept a newt .

int
rehash;

Rehash the key of the receiving element.

int
rehashg;

Rehashq the key of the receiving element.

void
encodeUsingCoder coder;

Undocumented.

void
initWithCoder coder;

Undocumented.

(id, int)
gc_mark_values;

Starting with this bucket element, remove those bucket elements of which the objegts deed .
Return the replacement for this element, and the number of bucket elements that were removed from
this bucket list.

94

Chapter 8. Unittom

File tom/BucketIintDictElement

class tom.BuckeflntDiciElement]
inherits
State supergSucketElement |

instance tom.BuckeflnitDiciElement |

variables

public int key;

This bucket element’s key.

public value;
The value in this bucket element.

methods

id
initWith (int, BI) (k, v);

Designated initializer.

By
member int k;

Return the value associated with the keyasking thenext element if this element does not match.

The implementation buckeflniDictElement], considers itkey and returns itsalue .

By

memq int k;
Undocumented.

int
add (int, Br) (k, v);

Add the(k, v) pair to this bucket, if the key is not already present. Return the number by which this
bucket’s length has increased.

int
addg (int, A& (K, V);

Add the(k, v) pairto this bucket, if the key is not already present. Return the number by which this
bucket’s length has increased.

95

Chapter 8. Unittom

int
rehash;

Return the integer key.

int
rehashg;

Return the integer key.

(id, int)
remove int k;

Remove the object with the kéy Return the replacement for this element, and the number of bucket
elements that were removed from this bucket list (max 1).

(id, int)
gc_mark_values;

Starting with this bucket element, remove the objects of whichvitiige is gc_dead . Return the
replacement for this element, and the number of bucket elements that were removed from this bucket
list.

File tom/BucketPDictElement

class tom.BuckefPaointerDictElement]
inherits
State supergSucketElement |

instance tom.BuckefPoinferDiciElement |

variables

public pointer key;
This bucket element’s key.
public value;
The value in this bucket element.

methods

id
initWith (pointer, B (k, v);

96

Chapter 8. Unittom

Designated initializer.

By

member pointer k;

Return the value associated with the keysking thenext element if this element does not match.

The implementation bgucketDictElement |, considers it&ey and returns itsalue .

int
add (pointer, Br) (k, v);

Add the(k, v) pair to this bucket, if the key is not already present. Return the number by which this
bucket'’s length has increased.

(id, int)
gc_mark_values;

Starting with this bucket element, remove the objects of whichviihée is gc_dead . Return the
replacement for this element, and the number of bucket elements that were removed from this bucket
list.

int (code)
rehash;

Rehash the pointer key.

int (code)
rehashg;

Rehash the pointer key.

(id, int)
remove pointer k;

Remove the object with the kéy Return the replacement for this element, and the number of bucket
elements that were removed from this bucket list (max 1).

File tom/BucketSetElement

class tom.BucketSetElement |
inherits
State super{BucketElement |

97

Chapter 8. Unittom

instance tom.BuckefSefFlement |

variables

value;
The key/value in this bucket element.

methods

void
do block;

Apple theblock tovalue and pass toext .

Ay
key;

Undocumented.

id
initWith B v;

Designated initializer.

By
member BI] key;

Return the value associated with they , asking thenext element if this element does not match.

The implementation bgucketSetElement |, considers itvalue as the both the key and the value.

By
member BI] key
equal selector cmp;

Like member, but using the selectanp to have the objects compare themselves.

By
memq BIC] key;

Undocumented.

int
add BEI] key;

Add thekey to this bucket, if it is not already present. Return the number by which this bucket's
length has increased.

int
addq @I key;

98

Chapter 8. Unittom

Add thekey to this bucket, if it is not already present. Return the number by which this bucket's
length has increased.

(id, int) (replacement, decrease)
remove RI] key;

Remove this bucket, if it holds they . Return the number by which the length of this bucket list has
decreased, and the replacement remainder of the bucket list.

(id, int) (replacement, decrease)
removeq [BI] key;

Remove this bucket, if it holds they . Return the number by which the length of this bucket list has
decreased, and the replacement remainder of the bucket list.

void
encodeUsingCoder coder;

Undocumented.

void
initWithCoder coder;

Undocumented.

void
gc_mark_containers;

Tell thevalue togc_container_mark_elements

(id, int)
gc_mark_values;

Starting with this bucket element, remove the objects of whichvithee is gc_dead . Return the
replacement for this element, and the number of bucket elements that were removed from this bucket
list.

int
rehash;

Rehash the key of the receiving element.

int
rehashg;

Rehashq the key of the receiving element.

99

Chapter 8. Unittom

File tom/Bundle

class tom.Bundle]
inherits
State super$gtate], Constants |
variables

static main;

The main bundle, i.e. the bundle describing the program and the units.

static units_path;
The path as registered by the units.

methods

(s)

help s
done done;

Hook for responding to command line argume-alp
pointer
loadUnit unit
fromObject object;

Load theunit from theobject , returning the underlying operating system handle upon success, or
the NULL pointer upon failure. Arrror is signaled in case of the latter. Theit is the name of
the unit supposedly contained in thigiect . This unit, when present, will be resolved.

pointer
load object;

Derive the unit name from thebject name and invok&adUnit fromObject

void
load arguments;
Accept:main-bundle-dir option and allocate th@ain bundle if found.
Bring]
locate-file file
extension ext
with-version: version = nil;

Forward this to the main bundle.

100

Chapter 8. Unittom

instance (id)
main;

Return the main bundle, creating it iff necessary.

void
registerUnitDirectory dir;

Register thalir as to contain resources for one of the units.

instance tom.Bundle |

variables

public directory;
The directory.

pointer handle;

Iff not the null pointer, the handle (in the underlying operating system) to the code loaded for
this bundle. Iff it is the null pointer, the code has not (yet) been loaded.

methods
id (self)
init d;
Undocumented.
Brng]
locate-file file
extension ext
with-version: version = nil;

Locate thefile for theversion in this bundle. If not found, search the main bundle. Iff still not
found, it is searched for in the registered unit directories.

The extensiorxt , if not nil , is appended to thide , with a dot () in between.

File tom/ByteArray

class tom.ByteArray |

Like the CharArray], the ByfeArray | is a particular kind offrray], which is here for abstraction
purposes, but which is never actually used, sinceBiieString__] holds the same kind of state, but
provides much more functionality.

101

Chapter 8. Unittom

inherits

State supergarray |

instance tbm.ByteArray |

methods

protected id
initWithEnumerator e;

Undocumented.

By
at int index;

Undocumented.

byte
at int index;

Undocumented.

char
at int index;

Undocumented.

int
at int index;

Undocumented.

long
at int index;

Undocumented.

float
at int index;

Undocumented.

double
at int index;

Undocumented.

int
elementByteSize;

102

Undocumented.

int
hash;

Undocumented.

(pointer, int)

pointerToElements (int, int) (start, len);

Undocumented.

int
writeRange (int, int) (start, len)

into destination

at int position;
Undocumented.

void

encodeUsingCoder coder;

Undocumented.

void
initWithCoder coder;

Undocumented.

class (Bm@E])
mutableCopyClass;

Return theMutableByfeArray] class.

File tom/ByteStream

class fom.ByteStream |

Chapter 8. Unittom

Instances of thByfeSiream | class are an abstraction of the UNIX file descriptors.

inherits

State supergescriptor |, [nputOutputSiream

instance tom.ByteStream |

methods

103

Chapter 8. Unittom

byte
read;

Read a byte and return it, raising an exception on end-of-file or error.

int
read;

Read a byte and return it, returniggpFon end-of-file.
int
readRange (int, int) (start, num)
into buffer;
Have thebuffer read at mostum bytes from the receivingyteStream | starting afstart

void
write byte b;

Undocumented.

int

write byte b;
Undocumented.
int

writeBytes int num

from pointer address;

Undocumented.

File tom/ByteString

class tom.ByteString |

A ByfeSiring__] is aBiring_| and aByteArray], which can do all kinds of nice string-like things.

Requesting aubstring of aByfeString__| results in to be returned. This will
mimic aByteString__] as much as possible, including hashing, equality, uniquing, printing, copying,
etc, but they do not share a common superclass bet@@en_| andByteString__|.

In the future, theByteString__| instance actual functionality could be put int®geFullstring ,
enabling thByfeSubstring__| to actually become a subclassBeString__|...

inherits

State supergyteArray |, Biring_|, @, Constants

104

Chapter 8. Unittom

variables

static default_encoding;
The default character encoding instances.
Never refer this variable directly; always ask the string (even ifsels) for its encoding . A
normalByteSiring] will then return thisdefault_encoding

methods

OupuStrean]
help pDuiputStream] S
done MuiableKeyed] done;

Output information on thByteSiring__| unit arguments.
void
load arguments;
Set the default byte encoding. If it is not specified on the commandismg€g59-1 will be used.

Before this method is invoked by the runtime library, thefault_encoding will be a USASCH
| 1ENCoaing__|.

void
switchToEncoding name;

Switch to the encoding with theame, moaning if it fails (without changing the current encoding).

instance tbm.ByteString |

methods

char
at int index;

Return the Unicode character for the byténaex .

(pointer, int)
byteStringContents;

Undocumented.

boolean
equal other;

Undocumented.

int
hashRange (int, int) (start, len);

105

Chapter 8. Unittom

Undocumented.
boolean
equalByteString other;
Undocumented.
boolean

equalCharString other;

Undocumented.
boolean

equalUniqueString other;
Undocumented.

protected id (self)
init (pointer, int) (p, num);

Initialize the newly allocated instance with them bytes atp. The receiving instance will ‘own’ the
memory afp.

id (self)
initCopy (pointer, int) (p, num);

Initialize the newly allocated instance with a copy of then bytes afp.

MUtEbleBYEeSTing 1

mutableSubstring (int, int) (start, len);

Return a new instance of the receivariatableCopyClass , initialized with a substring from the
receiver’'s rangéstart, len)

B

substring (int, int) (start, len);
Undocumented.

ONqueBYresTng 1

uniquestring;
Undocumented.

OutputStrearnm—]
write s,

Undocumented.

class (BiaE])
mutableCopyClass;

106

Chapter 8. Unittom

Return theViutableByteString | class.

Characterencoding]
encoding;

Return the encoding of the receiviigyteSiring__]. The default implementation returns the-
fault_encoding

smng—
stringByDecoding encoding_name;

Undocumented.

Bring]
stringByDemapping demap;

Undocumented.

boolean
isAlpha byte b;

ReturnTRUEthe character denoted by the bytén the encoding of the receiving string is a letter.

boolean
isDigit byte b;

ReturnTRUEthe character denoted by the bytén the encoding of the receiving string is a digit.

boolean
isLower byte b;

ReturnTRUEthe character denoted by the byter the encoding of the receiving string is a lowercase
letter.

boolean
isPunct byte b;

ReturnTRUEthe character denoted by the bytén the encoding of the receiving string is a punctua-
tion character.

boolean
isSpace byte b;

ReturnTRUEthe character denoted by the bytén the encoding of the receiving string is a space
character.

boolean
isUpper byte b;

107

Chapter 8. Unittom

ReturnTRUEthe character denoted by the byte the encoding of the receiving string is a uppercase
letter.

byte
toLower byte b;

Return the lower-case version of the bysteaccording to the encoding of the receiving string. If the
character is not in upper-case, it is returned unharmed.

byte
toUpper byte b;

Return the upper-case equivalent of the hytaccording to the encoding of the receiving string. If
the character is not in lower-case, it is returned unharmed.

int
digitValue byte b;

Return the value equivalent of the bytefor which this string should returfiRUEwhen askeds-
Digit

int
alphaValue byte b;

Return the index of the lettérrelative to the start of its letter range. Thus, 'a’ returns 0, 'f’ returns 5,
etc.

id
downcase;

This version ofdowncase overrides the implementation IBfring_], since this one is faster due to
avoiding the unnecessary conversion to/from Unicode.

id
upcase;

Like downcase , this just is a faster implementation than the one provideg8tbyg_].

File tom/ByteSubstring

class fom.ByteSubstring |

A is a substring of a constaByteSiring__]. It tries to maskerade as one (even
though it is certainly not afrray), possibly not perfect (yet).

inherits
State supergtring 1, G

108

Chapter 8. Unittom

methods

instance (id)
with (int, int) (start, len)
in string;

Undocumented.

instance tbm.ByteSubstring |

variables

string;
The string we're begin part of.

int start;

The start of us in oustring

public int length;
The length of us, which is never 0.
methods
id
init (int, int) (s,)
in str;
Designated initializer.

class (Bm@E])
mutableCopyClass;

Return theMutableByteSiring] class.

byte
at int index;

Retrieve thebyte at theindex .

BYIENUMber]

at int index;

Return théByteNumber] at theindex .

Enmrmerator
enumerator;

Return a restricted enumerator on the underlying string.

109

id
initWithEnumerator e;

Undocumented.

(pointer, int)
pointerToElements (int, int) (begin, len);

Another low level access method.

BYESUbSTng 1
substring (int, int) (begin, len);

Return a new substring on ostring ---we do not cascade substrings.

MUtableBYEeSTng]
mutableSubstring (int, int) (begin, len);

Undocumented.

(pointer, int)
byteStringContents;

Low level access method.

boolean
equal other;

Undocumented.

int
hash;

Undocumented.

int
hashRange (int, int) (begin, len);

Undocumented.

boolean
equalByteString other;

Undocumented.

boolean
equalCharString other;

Undocumented.

boolean

Chapter 8. Unittom

110

Chapter 8. Unittom

equalUniqueString other;
Undocumented.

OniqueBYEeSTng]
uniquestring;

Undocumented.

OutputStreanm]
write S;

Undocumented.

File tom/C

class

The g class provides low-level memory manipulation functionality. With it, a lot of collection and
string methods can be written in TOM instead of needing to be written in C.

inherits
Behaviour super@ |

methods

void
free pointer address;

Release the memory atidress .

pointer
malloc int length;

Return a pointer to a newly allocated memory regiofeofith bytes.

pointer
calloc (int, int) (num, bytes);

Return a pointer to newly allocated and zeroed memory regionratlements of eacbytes size.

pointer
realloc (pointer, int) (address, length);

Return a pointer to the resized memory regioraddress which must holdiength bytes. The
address returned can differ from the previaddress .

int

111

Chapter 8. Unittom

memcmp (pointer, pointer, int) (one, other, length);
Return 0 iff thelength bytes abone equal the bytes aither .

int
memchr (pointer, int, int) (p, c, length);

Search the firsength bytes froms for charactee. Return the index ints at whichc first occurs.
If ¢ is not present, return the value -1.

pointer
memcpy (pointer, pointer, int) (to, from, length);

Copy thelength bytes fromfrom toto . Returnto .

pointer
memmove (pointer, pointer, int) (to, from, length);

Copy thelength bytes fromfrom toto , safely. Returno .

void
bzero (pointer, int) (p, num);

Set thenumbytes atp to 0.

instance tom.C |

Theinstance can be and is totally empty.

File tom/CharArray

class tom.[CharArray |

Like the ByteArray], the[CharArray | is a particular kind ofArray], which is here for abstraction
purposes, but which is never actually used, sincgi@String__| holds the same kind of state, but
provides much more functionality.

inherits

State supergarray |

instance tbm.QharArray |

methods

Ay
at int index;

112

Undocumented.

byte
at int index;

Undocumented.

char
at int index;

Return the char value atdex

int
at int index;

Undocumented.

long
at int index;

Undocumented.

float
at int index;

Undocumented.

double
at int index;

Undocumented.

int
elementByteSize;

Undocumented.

protected id

Chapter 8. Unittom

. This is the elementary retrieval method for character arrays.

initWithEnumerator e;

Undocumented.

(pointer, int)

pointerToElements (int, int) (start, len);

Undocumented.

class (BE])
mutableCopyClass;

Return théViutableCharArray] class.

113

Chapter 8. Unittom

File tom/CharEncoding

class fom.CharacterEncoding |

The[CharacterEncoding__] class defines the interface of the byte and character encodings for predi-
cates and conversions.

inherits

Behaviour super@ir |

instance tbm.QharacterEncoding |

inherits
Behaviour super@ |

methods

deferred String
name;

Return the name of this encoding.

deferred char
decode byte b;

Return the decoded byte i.e. the Unicode character corresponding to the byie the receiving
encoding.

deferred byte
encode char c;

Return the byte encoding of the charactelf the byte equivalent of the characterdoes not exist
in the receiving encoding, amcoding-condition is signaled, and the byte encoded is byte-
Value of the object returned, or 1271l is returned.

deferred boolean
isAlpha byte b;

ReturnTRUEthe character denoted by the bytén the receiving encoding is a letter.

deferred boolean
isDigit byte b;

ReturnTRUEthe character denoted by the bytén the receiving encoding is a digit.

deferred boolean
isLower byte b;

ReturnTRUEthe character denoted by the byte the receiving encoding is a lowercase letter.

114

Chapter 8. Unittom

deferred boolean
isPunct byte b;

ReturnTRUEthe character denoted by the byten the receiving encoding is a punctuation character.

deferred boolean
isSpace byte b;

ReturnTRUEthe character denoted by the byt the receiving encoding is a space character.

deferred boolean
isUpper byte b;

ReturnTRUEthe character denoted by the bytén the receiving encoding is a uppercase letter.

deferred byte
toLower byte b;

Return the lowercase version of the bigteaccording to the receiving encoding. If the character is not
in uppercase, it is returned unharmed.

deferred byte
toUpper byte b;

Return the uppercase version of the lytaccording to the receiving encoding. If the character is not
in lowercase, it is returned unharmed.

deferred int
digitvalue byte b;

Return the numeric value of the digit denoted by the lite the receiving encoding.

deferred int
alphaValue byte b;

Return the index of the lettérrelative to the start of its letter range. Thus, 'a’ returns 0, 'f’ returns 5,
etc.

class fom.[CharEncoding |

An instance of th&€harEncoding | class maintains information on on a particular mapping for en-
coding a subset of Unicode characters to 8-bit bytes. An example of such mapp&g88s9-1
which is the well known western european byte encoding, of wbRSCII is a subset.

inherits

State super$tate |, Constants_], Conditions |, CharacterEncoding__|

variables

115

Chapter 8. Unittom

static encodings;
Currently known encodings.

methods

ByteATay
loadBytes int num

from name
extension ext;

Loadnum bytes from the file with th@ame and the extensioext (sans dot). The full path of the file
is obtained from thenain Bundle.

instance (id)
named name;

Return th€CharEncoding | known as thename. This always succeeds, aEharEncoding | reads the
resources it needs on demand.

instance tbm.gharEncoding |

variables

public name;

The name of this encoding.

decoding;
The decoding map.

encoding;

The encoding map.

to_lower;

The byte map for conversion to lower case within the encoding.

BYEATTay] to_upper;
The byte map for conversion to upper case within the encoding.

ByfeArray] to_title;
The byte map for conversion to title case within the encoding.

is_digit;
The bitmap for testing whether a byte is a digit.

116

Chapter 8. Unittom

is_letter;

The bitmap for testing whether a byte is a letter.

is_lower;

The bitmap for testing whether a byte is lower case.

is_punct;
The bitmap for testing whether a byte is a punctuation character.

is_space;
Bitmap for space predicate.

is_upper;
The bitmap for testing whether a byte is upper case.

methods

id
init n;

Designated initializer.

char
decode byte b;

Return the decoded bytg i.e. the Unicode character corresponding to the byie the receiving
encoding.

CharArray]
decoding;

Return thedecoding map, reading it iff necessary.

byte
encode char c;

Return the byte encoding of the charaateltf the byte equivalent of the characterdoes not exist
in the receiving encoding, ancoding-condition is signaled, and the byte encoded is biyee-
Value of the object returned, or 1271l is returned.

MDIcuonary]

encoding;
Return theencoding map, creating it from thdecoding map if necessary.

protected ByteArray |
loadConversion conversion;

117

Chapter 8. Unittom

Load and return the conversion table for theversion of the receiving encoding.

protected ByteArray |
loadPredicateSet predicate;

Load and return the predicate set for thedicate of the receiving encoding.

boolean
isAlpha byte b;

ReturnTRUEthe character denoted by the bytén the receiving encoding is a letter.

boolean
isDigit byte b;

ReturnTRUEthe character denoted by the bytén the receiving encoding is a digit.

boolean
isLower byte b;

ReturnTRUEthe character denoted by the bytén the receiving encoding is a lowercase letter.

boolean
isPunct byte b;

ReturnTRUEthe character denoted by the byten the receiving encoding is a punctuation character.

boolean
isSpace byte b;

ReturnTRUEthe character denoted by the bytén the receiving encoding is a space character.

boolean
isUpper byte b;

ReturnTRUEthe character denoted by the bytéen the receiving encoding is a uppercase letter.

byte
toLower byte b;

Return the lowercase version of the bigteaccording to the receiving encoding. If the character is not
in uppercase, it is returned unharmed.

byte
toUpper byte b;

Return the uppercase version of the bytaccording to the receiving encoding. If the character is not
in lowercase, it is returned unharmed.

int
digitValue byte b;

118

Chapter 8. Unittom

Return the numeric value of the digit denoted by the lwite the receiving encoding.

int
alphaValue byte b;

Return the index of the lettérrelative to the start of its letter range. Thus, 'a’ returns 0, 'f’ returns 5,

etc.
class fom.JSASCIIEncoding
A replacement for a re@harEncoding_] used during program initialization.
inherits
State super$tate], CharacterEncoding__|
variables

static shared;

The one and onlFSASCIIEncoding | object.

methods

instance (id)
shared;

Undocumented.

instance tbm.USASCIIEncoding |

methods

sring

name;

We're really a dummy, so we do not have a name. In fact, that is how we're recognized.

char
decode byte b;

This is acceptable for iso-8859-1.

byte
encode char c;

This is acceptable for iso-8859-1.

boolean
isAlpha byte b;

119

Chapter 8. Unittom

Undocumented.

boolean
isDigit byte b;

Undocumented.

boolean
isLower byte b;

Undocumented.

boolean
isPunct byte b;

Undocumented.

boolean
isSpace byte b;

Undocumented.

boolean
isUpper byte b;

Undocumented.

byte
toLower byte b;

Undocumented.

byte
toUpper byte b;

Undocumented.

int
digitValue byte b;

Undocumented.

int
alphaValue byte b;

Undocumented.

120

Chapter 8. Unittom

File tom/CharString

class tom.CharString |

inherits

State superg€harArray |

instance tbm.QharString |

methods

boolean
equal other;

Undocumented.

boolean
equalByteString other;

Undocumented.

boolean
equalCharString id other;

Undocumented.
boolean

equalUniquesString other;
Undocumented.

protected id
init (pointer, int) (p, num);

Initialize the newly allocated instance with them characters gi. The receiving instance will ‘own’
the memory ap.

id (self)
initCopy (pointer, int) (p, num);

Initialize the newly allocated instance with a copy of thenchars ap.

MutEabteCharsTng 1
mutableSubstring (int, int) (start, len);

Undocumented.

charsrng—
substring (int, int) (start, len);

121

Chapter 8. Unittom

Undocumented.

pnigueCharsing——]
uniquestring;

Undocumented.

class (Biae])
classForCoder coder;

Undocumented.

class (Bfate])
mutableCopyClass;

Return theVutableCharString] class.

File tom/Condition

class tom.ICaondifion]
inherits

State supergiate]

methods

instance (id)

for REIT] object
class condition_class

message Bwng_] msg;

Return a neviCondifion 1 for the indicated circumstances.

instance tom.Condifion |

variables
public condition_class;
The condition class of the condition indicated by @isdifion .

public object;

The object by/for which this condition was raised.

public message;

The message explaing what actually happened.

122

Chapter 8. Unittom

public boolean raised;
Iff TRUE this condition was raised, otherwise it was signaled.

methods

protected id
initFor B o
class cc

message BSwng_] msg;
Undocumented.

void
raise;

Raise this condition; guaranteed never to return.

Ay
signal;

Signal this condition. If a handler performs a non-local break, this method does not return. If no
handler is installednil is returned. If a handler returns something different from this condition,
signaling is terminated and that value is returned.

(s)
writeFields S;

Undocumented.

class tom SelectorCondifion |

inherits

State supergCondition]
methods

instance (id)
for REI] object
class condition_class
message msg
selector selector sel;

Return a neviBeleciorCondifion 1 for the indicated circumstances.

instance tbm.8electorCaondifion |

variables

123

Chapter 8. Unittom

selector sel;
The selector which was sent to tbigiect

methods

protected id
initFor B o
class cc

message Bwng—] msg
selector selector s;
Undocumented.

selector
selector;

Return the selectosgl .

(s)
writeFields s;
Undocumented.

File tom/ConditionClass

class tom.ICandifionClass |

Instances of th€onditionClass__] define the hierarchy of conditions as carried@pndition] in-
stances. Conditions classes could be real tom classes, but the features provided by said mechanism
are too baroque for this purpose---only the inheritance is needed.

The tom condition class hierarchy does not employ multiple inheritance.

TOM conditions are evidently modelled after CL.

inherits
State supergiaie |
methods

instance (id)
with instance (id) super_condition
name BYESUING 1 name;

Undocumented.

124

Chapter 8. Unittom

instance tom.CondifionCIass |

variables

id super_condition;

Our super condition class. The super condition class of thediogition s nil

public name;
Our descriptive name.
methods
protected id
init id sc
name BYESTNg] nm;

Undocumented.

boolean
isConditionSuper id other;

Return YES iffother is a super condition class of the receiving condition class.

File tom/Conditions

class tom.ICondifions |

The[Condifions _]| class is an instance-less non-static-state-less class providing predefined conditions.
Not-predefined, i.e. user defined, conditions should be made available to the world through an exten-
sion of Candifions 1.

variables

static B unhandled_condition_handler;

The object informed of unhandled condition raisesnilff , the program aborts when a condition
being raised is not handled. This feature is not yet implemented within the runtime.

static selector unhandled_condition_selector;

The selector of the message to be sent taitihendled_raise_handler . This method accepts
a single argument, which will be@ondition _|. This feature is not yet implemented within the
runtime.

static condition;

Various (and numerous) condition classes, indented according to condition inheritance.

125

Chapter 8. Unittom

static onamonclass warning;

static onditionClass unimplemented,;

static onditionclass encoding-condition;

static ConditionClass 1 serious-condition;

static CondiionClass 1 runtime-condition;

static CondimionClass 1 runtime-fatal;

static ondmonclass 1 nil-receiver;

static onditionclass unrecognized-selector;

static onditionclass uncaught-throw;

RERRRRARRERE
i

static program-condition;
static CondiionClass 1 unknown-class-condition;
static onamonclass coding-condition;

static ONditionClass type-condition;

static ConditionClass 1 lock-condition;

126

static

static

static

static

static

static

static

static

static

static

static

static

static

.@ e
i i i

ondiuonClass |

condigonClass |

conditionClass |

ondituontClass

ondituonClass

onditiontlass

onditionClass

condiuonClass |

condition-condition;

error;

file-error;

stream-error;

stream-eos;

signal-condition;

signal-hup;

signal-int;

signal-bus;

signal-segv;

float-condition;

overflow-condition;

underflow-condition;

instance tom.Condifions |

Chapter 8. Unittom

127

Chapter 8. Unittom

File tom/Cons

class

inherits
State supergtaie]
methods

instance (id)
with (B, B) (a, d);

Return a newly allocated instance with thandd as thecar andcdr , respectively.
instance (id)
cons @i a

B d = nil;

Return a newly allocated instance with thandd as thecar andcdr , respectively. The cdf defaults
tonil .

instance tom.Caons |

variables
public car;
The element contained in tH&ns cell, and the remainder of the list.

public cdr;

methods

protected id (self)
init (A, BC) (a, d);

Designated initializer.

boolean
consp;

ReturnYES

(AY, BAY)
decons;

Return thecar, cdr) in a tuple.

128

Chapter 8. Unittom

void
set car RO c;

Set thecar to the object.

void
set_cdr A c;

Set thecdr to the object.

void
encodeUsingCoder coder;

Encode the receiving object to theder .

boolean
equal id other;

ReturnTRUEIf the receiving list is equal to thether list. Elements are compared wigqual .

int (value)
hash;

Use thecar andcdr to compute a hash value for thi®ng cell.

void
initWithCoder coder;

Decode the receiving object from theder .

id
member BI] object;

Return the Cons cell whose cardigual to theobject

id
memq BI] object;

Like member, but the element is identified on reference equality.

OutputStrearm—]
write s,

Output the list, of which the receivirf@ong cell is the start, to the stream

OutputStreant]
writeListElement S;

Continue outputing the list, of which the receiviggng cell is an element and not the head, to the
streams.

129

Chapter 8. Unittom

File tom/Constants

class tom.ICaonstanits]

The constants used throughout the tom unit.
variables

[Crie1 constants

const TRIE_PLAIN = O;

The plain option indicates absence of other options.

const TRIE_REVERSED = 1;

Reverse the string before insertion or lookup.

const TRIE_FOLD_CASE = 2;

Ignore the case during a lookup; use lower-case characters during an insert.

const TRIE_LOOKUP_PREFIX = 4;
Do not require a full match in a lookup; the longest prefix will match with this option specified.

Open flags

const FILE_EXIST_NOTHING = 1,

If the file exists, do nothing (and return nil).

const FILE_EXIST_RAISE = 2;

If the file exists, raise a condition.

const FILE_EXIST_TRUNCATE = 4;

If the file exists andutput_p , truncate it to zero length.

const FILE_EXIST_SUPERSEDE = 8;
If the file exists andbutput_p , a new version of the file will be created (by unlinking the old
file first).
const FILE_NOT_EXIST_NOTHING = 16;
If the file does not exist, do nothing (and return nil). If oiMput_p , nil will also be returned
if it can’t be opened anyway.
const FILE_NOT_EXIST_RAISE = 32;

If the file does not exist, raise a condition.

130

const FILE_NOT_EXIST_CREATE = 64;
If the file does not exist anoutput_p

const

Every write will append to the end of the file.

const

FILE_APPEND = 128;

FILE_MASK = 255;

A mask for the above flags.

const FILE_TYPE_NONEXISTENT = 0;

Retrieving information about a file.

const

const

const

const

const

const

const

const

FILE_TYPE_OTHER = 1;

FILE_TYPE_SOCKET = 2;

FILE_TYPE_LINK = 3;

FILE_TYPE_REGULAR = 4;

FILE_TYPE_BLOCK = 5;

FILE_TYPE_DIRECTORY = 6;

FILE_TYPE_CHARACTER = 7;

FILE_TYPE_FIFO = 8;

Positioning g5eekableStream |

const

STREAM_SEEK_SET = 0;

Position absolute.

Chapter 8. Unittom

131

const

Position relative to the current position.

const

Position relative to the end of the file.

STREAM_SEEK_CUR = 1;

STREAM_SEEK_END = 2;

TypeDescriptiom] types.

const

TYPEDESC_VOID = 0;

Chapter 8. Unittom

This value indicates theoid type. The other values follow the same naming convention.

const

const

const

const

const

const

const

const

const

const

TYPEDESC_BOOLEAN = 1,

TYPEDESC_BYTE = 2;

TYPEDESC_CHAR

Il
w

TYPEDESC_INT = 4,

TYPEDESC_LONG = 5;

TYPEDESC_FLOAT = 6;

TYPEDESC_DOUBLE = 7;

TYPEDESC_POINTER = 8;

TYPEDESC_SELECTOR = 9;

TYPEDESC_REFERENCE = 10;

132

Chapter 8. Unittom

const TYPEDESC_DYNAMIC = 11;

const TYPEDESC_NUM = 12;

This is not a real type; it merely denotes the number¥EDESC values.

instance tom.Caonsfants |

File tom/DCons

class tom.IDCons |

inherits

State supergons
methods

instance (id)
with (B, A, M) (av d, b)x

Undocumented.

instance tom.DCaons |

variables

public cbr;
The back pointer.

methods

void
set_cbr QI c;

Undocumented.

boolean
dconsp;

Undocumented.

protected id (self)
init (AO, AO, AO) (a, d, b);

Undocumented.

133

Chapter 8. Unittom

(B, BAO, BO)
dedcons;

Undocumented.

void
unlink;

Undocumented.

class tom.1lstEFnumerator |
inherits

State super$taie], Enumerafor
methods

instance (id)
with DLst] |;

Undocumented.

instance tom.ListEnumerafar |

variables

cell;

The current cell.

methods
id (self)
init C;

Designated initializer.

(boolean, BI)
next;

Undocumented.

class

inherits

State supergviutableOrdered |

methods

instance (id)

134

Chapter 8. Unittom

new;

Undocumented.

instance tom.DList |

variables

public head;

public tail;

methods

Enmmerator4
enumerator,

Undocumented.

int
length;

Undocumented.

void
add A object;

Undocumented.

void
empty;

Undocumented.

DCons
cellAtindex int index;

Undocumented.
void
set QAI] object

at int index;

Undocumented.

void
swap [AI] object

135

at (int, int) @i, j);
Undocumented.

void
reverse (int, int) (start, len);

Undocumented.

void
reverse;

Fast and easy method for the simplest case.

void
pushHeadCons cell;

Push the cell to the front of the list.

void
pushTailCons cell;

Push the cell to the back of the list.

void
pushHead [RBI] object;

Push the element to the front of the list.

void
pushTail RBI] object;

Push the element to the back of the list.

void
removeCons cell;

Remove a cell from the list. The cell should be a member.

[svim]

popHead
pre

head != nil;

Pop the element from the head of the list.

Avim]
popTalil
pre
head != nil;

Chapter 8. Unittom

136

Chapter 8. Unittom

Pop the element from the tail of the list.

[Avim]
first
pre
head != nil;

First element of the list.

[avim}
last
pre
head != nil;

Last element of the list.

boolean
dlistp;

Return TRUE.

File tom/Date

class

The Date class implements absolute times using doubles to represent the number of seconds passed
since a certain reference date. Internally the time at which the Date class was initialized is used as
reference. As absolute reference the first instant of January 1, 2001 is used. All gregorian calculation
functions use an absolute date which is the number of days since the Gregorian date December 31, 1

BC.

inherits

State supergiate]
variables

const EPSILON = 1e-06;
For two dates to be considered equal they should be no further apagRISAON.

const OFFSET_DISTANT_FUTURE = 1e+100;

const OFFSET_DISTANT_PAST = -OFFSET_DISTANT_FUTURE;

137

Chapter 8. Unittom

const SECONDS_PER_DAY = 86400.0;

const ABSOLUTE_REFDATE = 730486;
The number of days from the imaginary Gregorian date Sunday, 31 december 1 BC to our refer-
ence date (January 1 2001).

static public double relative_offset;

Some offset from the reference date relative to which all Date instances maintain their notion
of time. This is set ifoad , ensuring a high accuracy of dates near the moment in time during
which this program is running.

static public distant_future;

A date in the very far future and a date in the very far past.

static public distant_past;

methods

double (now)
relativeTimelntervalSinceNow
post
now > 0.0;

Return the number of seconds aftelative_offset it is now.

double
timelntervalSinceReferenceDate;

Return the number of seconds after the absolute reference date it is now. This number is negative for
dates before the first instant of January 1, 2001.

(int, double)
absoluteAndSecondsOfTimelnterval double ti;

Return the absolute date and the seconds passed in that day for a time interval since the reference
date.

int
absoluteFromGregorian (int, int, int) (year, month, day);

The number of days elapsed between the Gregorian date 12/31/1 BEeandmonth, day)
The Gregorian date Sunday, December 31, 1 BC is imaginary.

int
absoluteFromliso (int, int, int) (year, week, day);

138

Chapter 8. Unittom

The number of days elapsed between the Gregorian date 1 BC December 31 and DATE. The ‘1ISO
year' corresponds approximately to the Gregorian year, but weeks start on Monday and end on Sun-
day. The first week of the ISO year is the first such week in which at least 4 days are in a year. The

ISO commercial DATE has the forigear, week, day) in which week is in the range 1..52 and

day is in the range 0..6 (1 == Monday, 2 == Tuesday, ..., 0 == Sunday). The Gregorian date Sunday,

December 31, 1 BC is imaginary.

int
dayNameOnOrBefore (int, int) (day_name, absolute);

Returns the absolute date of ti@y_name on or beforeabsolute . day name==0 means Sunday,
day_name==1 means Monday, and so on.

Note: Applying this function taabsolute +6 gives us thelay name on or after an absolute day
d. Similarly, applying it toabsolute +3 gives theday name nearest tabsolute , applying it to
absolute -1 gives theday name previous toabsolute , and applying it tcabsolute +7 gives the
day_name following absolute

int
dayNumber (int, int, int) (year, month, day);
Return the day number within the year of the dgtar, month, day) . For example, dayNumber
(1, 1, 1987) returns the value 1, while dayNumber (12, 31, 1980) returns 366.
int
dayOfWeekOfAbsolute int absolute;

Return the Gregorian day of the week &isolute where 0==Sunday, 1==Monday, ..., 6==Saturday.

(int, int, int)
gregorianFromAbsolute int date;

Compute the list (month, day, year) corresponding to the absolute DATE. The absolute date is the
number of days elapsed since the (imaginary) Gregorian date Sunday, December 31, 1 BC.

boolean
isLeapYear int year;

ReturnTRUEIff year is a Gregorian leap year.

(int, int, int)
isoFromAbsolute int absolute;

Compute the ‘ISO commercial date’ corresponding to dhsolute . The ISO year corresponds
approximately to the Gregorian year, but weeks start on Monday and end on Sunday. The first week
of the 1SO year is the first such week in which at least 4 days are in a year. The ISO commercial
date has the form (year week day) in which week is in the range 1..52 and day is in the range 0..6 (1
= Monday, 2 = Tuesday, ..., 0 = Sunday). The absolute date is the number of days elapsed since the
(imaginary) Gregorian date Sunday, December 31, 1 BC.

139

Chapter 8. Unittom

int
lastDayOfMonth int month
year int year;
Return the last day of the montionth of the yearyear .

void
load arguments;

Perform class initialization.

DatEm
now,

Return a date instance representing this moment.

protected double
relativeTimelntervalOfAbsoluteAndSeconds (int, double) (absolute, seconds);

Return the absolute date and the seconds passed in that day for a time interval since the reference
date.

double
timelntervalOfAbsoluteAndSeconds (int, double) (absolute, seconds);

Return the absolute date and the seconds passed in that day for a time interval since the reference
date.

instance tom.Date |

variables

double relative_ti;

methods

int
compare id other;

Returns -1 if the receiver is earlier thather 0O if the difference is smaller th&PSILONand 1 if the
receiver is aftepther .

id
dateWithOffset double ti;

Return a new instance initializedtt seconds after the receiver.

Baten

140

Chapter 8. Unittom

earlierDate other;
Returnother if it is earlier than the receiver, return the receiver otherwise.

boolean
equals id d;

ReturnTRUEIff the receiver is withinEPSILON seconds ofl.

protected id
init double d;

Designated initializer.

id
init;

Initialize with the current time.

id
initWithTimelntervalSinceNow double ti;

Initialize withti seconds after the current time.

id
initWithTimelntervalSinceReferenceDate double ti;

Initialize withti seconds after the absolute reference date January 1, 2001.

[Dria]
laterDate other;

Returnother iff it is later than the receiver, return the receiver otherwise.

protected double
relativeTimelnterval;

Return the number of seconds aftelative_offset

double
timelntervalSinceDate d;

Return the number of seconds passed sindéhis number is negative if the receiver is earlier tdan

double
timelntervalSinceNow;

Return the number of seconds passed since now. This number is negative for dates before now.

double
timelntervalSinceReferenceDate;

141

Chapter 8. Unittom

Return the number of seconds passed since the absolute reference date. This number is negative for
all dates before the first instant of January 1 2001.

OutputStrean]
write s,

Print this date in a human readable format, relative to GMT.

void
encodeUsingCoder coder;

Undocumented.

void
initWithCoder coder;

Undocumented.

File tom/Descriptor

class tom.[Descriptor |
A is the abstraction of the UNIX file descriptor.

inherits
State supergState], Condifions

instance tbm.Descriptor |

variables

public int descriptor;
The file descriptor. This will be -1 if we're not actively open.

methods

void
close;

Close this descriptor. If it succeeds, every read, write, or other operation afterwards will certainly fail.
If it fails, this may not be the case.

void
dealloc;

Close thadescriptor ifitisnot-1.

142

Chapter 8. Unittom

id
init;

Invoke[self init -1] to avoid ever closing file descriptor 0 by accident.

protected id
init int fd;

Designated initializer: Initialize witlfid as thedescriptor
int
type-of-file;

Return one of th&ILE_TYPE_* constants for the receiving File. Signafila_error and return
FILE_TYPE_NONEXISTENTIf not open.

File tom/Dictionary

class tom.DictionaryContainer |

A DictionaryContainer | is a class which can be inherited Pyctionary __J-like objects, to allow
them to be a container, with respect to their value objects. It is a seperate class, for inheritance by the
PomnterDictionary class.

inherits

State supergContainer |

instance tbm.DictionaryContainer]

class tom.[PbjeciDictionary |

An DbjectDictionary | is aDictionary | mapping objects to objects. It is the superclaspiof]

fionary | andEgDictionary__|. The latter hash the key objects on their address, and uses pointer

equivalence.
inherits
State supergdashTable |, Mapped, DicfionaryContainer

instance tom.ObjectDictionary |

methods

void
doKeys block;

143

Evaluate théblock for each key.

Enmmerator—
enumerator;

Return avalueEnumerator

By
member AT object;

InvokeHashTable |'s implementation.

BTy
memq EI] object;

InvokeHashTable |'s implementation.

Ermmerator—
keyEnumerator;

Return an enumerator on the keys of this dictionary.

plicuonaryenudmerator |
valueEnumerator,

Return an enumerator on the values of this dictionary.

OutputStreant]
write DUiputStream |

Undocumented.

class tom.Dictionary |

inherits

S;

State supergbjeciDictionary |

instance tbm.Dictionary

class fom.MutableDictionary |

inherits

State super{ictionary

|, MutableHash [able

|, MutableMapped |

instance tom.MutableDictionary |

methods

Chapter 8. Unittom

144

Chapter 8. Unittom

void
remove RI] key;

Remove the mapping for they .

void
add QI object;

Undocumented.

void
set BIO value
at B key
pre
value !'= nil && key != nil;

Undocumented.

class tom.DictionaryEnumerator]

inherits

State super$lashTableEnumerator |, MapEnumerafor

instance tom.DictionaryEnumerator |

variables

redeclare elt;

methods

(boolean, By, Bny) (valid, k, v)
next;

Undocumented.

class fom.DictionaryValueEnumerator |

inherits

State super{ictionaryEnumerator |

instance tom.DictionaryValueEnumerator |

methods

(boolean, Enyl) (valid, object)

145

Chapter 8. Unittom

next;

Undocumented.

File tom/DoubleArray

class tom.[poubleArray |

inherits

State supergarray |
methods

instance (id)
with dynamic elements;

Take thedouble arguments and craft a new array.

instance tbm.[DoubleArray |

methods

protected id
initWithEnumerator Enumerator1 e;

Undocumented.

By
at int index;

Undocumented.

byte
at int index;

Undocumented.

char
at int index;

Undocumented.

double
at int index;

Undocumented.

146

Chapter 8. Unittom

long
at int index;

Undocumented.

int
at int index;

Undocumented.

float
at int index;

Undocumented.

int
elementByteSize;

Undocumented.

(pointer, int)
pointerToElements (int, int) (start, len);

Undocumented.

class (BfaEe])
mutableCopyClass;

Return théViufableDoubleArray] class.

File tom/EgDictionary

class fom.EgDictionary |

inherits
State supergObjeciDictionary , EqHashTable

instance tom.HqgDictionary |

methods

id
initWithEnumerator Enumerator 1 €;

Undocumented.

147

Chapter 8. Unittom

class tom.NlutableEqgDictionary |

inherits
State superg€gDictionary |, MufableEqHashTable |, MutableMapped

instance tom.MutableEqgDictionary |

methods

void
remove RI] key;

Remove the mapping for they .

void
set BIO value
at B key
pre
value !'= nil && key != nil;

Undocumented.

class fom.MVeakKeyMutableEgDictionary |

The WeakKeyMutableEgDictionary is identical to a MutableEqDictionary, except that when it is a
container, the references to the keys are weak, whereas in the case of an ordinary MutableEgDic-
tionary the value references are weak.

inherits
State supergviutableEqDictionary |

instance tbm.WeakKeyMutableEgDictionary |

methods

void
gc_container_mark_elements;

Almost identical toMutableHashTable |'s implementation, but the bucket elements are asked to
gc_mark_keys instead ofgc_mark_values

File tom/EgHashTable

class fom.EqHashTable |

inherits

148

Chapter 8. Unittom

State supergiashTable |

instance tom.HqHashTable |

methods

Ay
at BT key;

Return thekey if present, omil otherwise.

void
resizing_add elt;

Undocumented.

class tom.NutableEqHashTable |

inherits
State superggHashTable |, MutableHashTable

instance tbm.MutableEqgHashTable |

methods

void
add elt;

Undocumented.

File tom/EqSet
class

inherits
State supersget],

instance tbm.HgSet |

class fom.MutableEqgSet |

inherits
State super€qgSet], MutableEqHashTable |, MutableSet |, Confainer

149

Chapter 8. Unittom

Retrieve a (any) object from the set. This removes an element from the set and returns it.

instance tbm.MutableEqgSet

methods

void
add A object;

Add theobject to the receiving set.

void
remove [object;

Removeelt from the receiving set, if present.

void
gc_mark_containers
pre
[self isContainer];

This method is invoked by the garbage collector to have the set containing all containers make those
containers mark their elements. This method relies on the container containing the containers be itself
a container.

File tom/Extension

class tom Exfension |

TheExtension] class represents the runtime structures for class extensions. All classes have at least
one extension, the main extension, which defines the behaviors and the state for that class. All other
extensions are defined by the programmer as extensions to the class.

inherits

State super$gtate |, Condifions |

variables

static extensions;
All extensions, here to be protected against gc.

methods

instance (id)
new pointer p;

150

Chapter 8. Unittom

Designated allocator. Do not usioc or plainnew.

instance tom._Bxfension |

variables

pointer rti;

The runtime structure describing this extension.

method_selectors;

The selectors for this extension’s methods.

INdexed var_names;
The names of this extension’s variables.

methods

void
dealloc;

An should never be deallocated. This method raises, which is a panic during garbage
collection...

boolean
implements selector sel;

ReturnYESif this extension provides an implementation for the selestor.

protected id (self)
init pointer r;

Designated initializer.

class (Bm@E])
meta;

Return the class object to which this extension belongs.

[Shugialemm|

name;

Return the name of this extension. This willtie for the main extension of a class.

(lale 12> (=10 |
methods;

Return the selectors for the methods in this extension.

151

Chapter 8. Unittom

boolean
hasState;

Return whether or not this extension defines variable additions.

Miexen
variables;

Return the names of the variables in this extension.
int
typeOfVariableNamed name
in A object;

Return the type of the variable nameame. The return value will correspond with one of thePE-
DESC_*constants defined on tii@nstants 1 class.

Ay
valueOfVariableNamed name
in AT] object;
Undocumented.
void
setValue dynamic value
ofVariableNamed name
in AI] object;
Undocumented.
OutputStreant]
writeFields S;
Undocumented.
dynamic
perform selector sel
on AM] object

with dynamic arguments;

The equivalent operform with where the method invoked is defined by this extension instead of
the receiving object. Obviously, thebject should actually have this extension as one of its exten-
sions, i.eJobject iskindOf [self meta]] should be a precondition (and a postcondition too,
but we're not interested after the fact).

dynamic
perform selector sel
on RAI] object
arguments = nil;

152

Chapter 8. Unittom

Undocumented.
File tom/File
class tom Hile |

The File class offers an abstraction from files in the filesystem.

inherits

State supergyteStream |, SeekableStream |, Constants_|, Condifions |

variables

const OPEN_INPUT = 256;

const OPEN_OUTPUT = 512;

methods
Brng]
basename filename
without-extension: ext = nil;

Return thefilename removing any directory component, and removing the extensionif it
matches and is naiil

[Sugaemm|
current_directory;

Return the current directory, as a directory name (tailing slash).

void

set_current_directory directory;
Set the currendiirectory . This raises &ile-error when problems arise.
Sring—

directory-of-file name;

Return the directory-name of the directory containing the file nafifeecme

Brng]
expand-filename filename
relative-to: directory = nil;

153

Expand thdilename relative to thedirectory . If directory isnil
current working directory.

smng—
express-filename filename
relative-to directory;
Express thdilename in terms relative to theirectory

B

filename-as-directory filename;
Return thefilename as the name of a directory.

MUtableAray

filenames-in-directory dir_name;
Return the filenames in the directory nantddname .
Bwng]

locate-file file

along-path path;

Return the filename of thide somewhere along thgath . Returnnil

boolean
file-exists name;

ReturnYES:iff the file with the name exists.

int
type-of-file name
follow-link: boolean follow_link = YES;

Return one of th€ILE_TYPE_* constants.

instance (id)
open BwWNg_] name
input: boolean input_p = FALSE
output: boolean output_ p = FALSE
flags: int action = 0;

Return a neviEde1.
instance (id)

open pBuing—] hame
alongPath path

subdir: String 1 subdirl = nil
subsubdir: subdir2 = nil;

Chapter 8. Unittom

, expansion is relative to the

if it could not be found.

154

Chapter 8. Unittom

Search for the file along thmath .

For the subdirectoriesubdirl andsubdir2 , when not nil, the following attempts are made for a
dir inthepath : dir , dir/subdir2 , dir/subdirl , anddir/subdirl/subdir2

void
remove BIAT_] hame;

Remove the file or directory with theame.

instance tom.Hile |

variables
public name;
The name of the file.

int flags;
If it is to be reopenend, these are the flags indicating how to do so.

methods

protected id

init n
flags int f;

Designated initializer.

sring—]

directoryName;
Return the name of the directory containing our file.

id
reopen;

Reopen the file according to tfiags
int
type-of-file;

Return one of theFILE_TYPE_* constants for the receiving File. If the file is not open, the file is
tested as if the file were open, i.e. following links.

OutputStreant]
writeFields S;
Undocumented.

155

Chapter 8. Unittom

long
length;

Return the length of the file.

long
position;

Return the current file position.

void
seek long offset
relative: int whence = STREAM_SEEK SET;

Position the file ‘pointer’.

File tom/FloatArray

class tom.FloatArray |

inherits

State superdirray |
methods

instance (id)
with dynamic elements;

Take thefloat arguments and craft a new array.

instance tbm.HloatArray |

methods

protected id
initWithEnumerator Enumerator 1 e;

Undocumented.

Ay
at int index;

Undocumented.

byte
at int index;

156

Undocumented.

char
at int index;

Undocumented.

float
at int index;

Undocumented.

long
at int index;

Undocumented.

int
at int index;

Undocumented.

double
at int index;

Undocumented.

int
elementByteSize;

Undocumented.

(pointer, int)

pointerToElements (int, int) (start, len);

Undocumented.
boolean
elementsLowerThan fa;

ReturnsTRUEIf every element irself

Eloarrray]
minor fa;

Undocumented.

class (BE])
mutableCopyClass;

Return theVutableFloatArray

] class.

Chapter 8. Unittom

is lower than the corresponding elementan

157

Chapter 8. Unittom

File tom/HashTable

class tom.HashTable |
inherits
State super$tate |,
variables

const GOLDEN_BITS = -1640531527;
Thirty-two bits by which to multiply a hashvalue to make all bits, more or less, significant.

This (unsigned) value is (1 << 32) * frac (0.5 + 0.5 * sgrt (5)). The value of which the fractional
part is taken is the golden ratio. (0x9e3779b9).

instance tom.HashTable |

variables

public int length;

The number of stored objects.

int size_shift;

The 2log of the number of buckets.

buckets;
The buckets.

methods

id (self)
init;

Designated initializer.

void
empty;

Remove all elements from the table.

void
do Biock] block;

Evaluate thevlock for each object element in thifashTable |, by passing this method to tiBeick-]
[oiFiemenr1S.

158

ATy
at @] key;

Return thekey if present, omil otherwise.

By
member BI] object;

A different name forat .

BTy
member B key
equal selector cmp;

Like member, but the elements are compared using the seleatpr

By
memq &I key;

Like member, but the element is identified on reference equality.

void
encodeUsingCoder coder;

Undocumented.

void
initWithCoder coder;

Undocumented.
protected void
adjust_length int inc
pre
inc = 0;

Adjust the length of the hashtable, resizing if necessary.

protected void
resize int new_shift;

Undocumented.

void
resizing_add elt;

Undocumented.

Chapter 8. Unittom

159

Chapter 8. Unittom

class tom.HashTableCaontainer |

The HashTableContainer class is just a HashTable which knows how to mark its elements as a con-
tainer. It is intended to be inherited by various class employing the HashTable class as a superclass
for implementation reuse.

inherits
State super$lashTable |, Container

instance tom.HashTableContainer |

methods

void
gc_container_mark_elements;

Undocumented.

class tom.NufableHashTable |

inherits
State supergiashTableContainer |, MufableKeyed

instance tom.MufableHashTable |

methods

void
add elt;

Addelt to the receiving hashtable.

void
remove elt;

Removeelt from the receiving hashtable, if present.

class tom.HashTableEnumerator |

inherits
State super$gtate], Enumerafor
methods

instance (id)
with b;

Undocumented.

160

Chapter 8. Unittom

instance tbm.HashTableEnumerafor |

variables
buckets;
The array the dictionary uses to store the buckets.

int next;

The next bucket index we shall use.

elt;
The bucket element we're looking at.

methods

protected id
init b;

Undocumented.

protected boolean
next;

Updateelt to point to the next bucket element.

File tom/Heap

class fom.Heap |

inherits

State super$State_], MutableCollection

instance tom.Heap |

variables

elements;
The array used to store the elements.

public int length;

The number of elements. This is equaldtements length]

161

Chapter 8. Unittom

public mutable selector compare_selector;
The selector used to have two elements compare themselves. If this isn'te@hare_r will
be used.

boolean max_heap;

If this is TRUE this is a heap of which the root node is the largest. Otherwise, the root is the
smallest node.

methods
id
init;
Invoke[self init TRUE]

id (self)
init boolean root_is_max;

Designated initializer.

boolean
dump_simple_p;

ReturnNQ

By
extract_min

pre
Imax_heap;

Extract the root of the heap, which must be a heap storing the minimum value at its root.

int
index_of_element B element;

Return the index of thelement in this heap. Used by elements that do not remember their own
index.

(object)
min

pre
Imax_heap;

Return the minimum value of the heap, which must be a heap storing the minimum value at its root.
Returnnil if the heap is empty.

By

extract_max
pre

162

Chapter 8. Unittom

max_heap;
Extract the root of the heap, which must be a heap which stores the maximum value at its root.

(object)
max

pre
max_heap;

Return the maximum value of the heap, which must be a heap storing the maximum value at its root.
Returnnil if the heap is empty.

(object)
extract_root
pre
length > 0
post
length == old length - 1;

Extract and return the roobject of the heap.
(object)
root
pre
length > O;
Return the roobbject of the heap, without extracting it.

void
remove elt;

Remove theelt from the receiving heap. Thet should be an element of the heap.

void
add object
post

length == 1 + old length;
Add theobject to this Heap.

void
addElementsFromEnumerator Enumerator | €,

Undocumented.

void
empty;

Remove all elements.

163

Chapter 8. Unittom

Enmmerator
enumerator,

Return an enumerator on the elements of this heap. Note that the order of the elements returned is
undefined.

protected void
build_heap;

Build a heap from the elements alreadyelaments .

int
compare ([Comparable], [Comparable]) (one, other);

Let one compare itself with thether , either using theompare_selector , or, if not set, thent
compare id method.

protected void
heapify int index;

Heapify from the node at index (which is off by 1 compared to the index of the element in the
elements array).

File tom/HeapElement

class fom.HeapElement |

inherits
State super$tate], Comparable

instance tbm.HeapElement |

variables

int heap_index;

The index of the element within tHéeag it is stored. This index is 1 more than the index in the
elements Afray] of theHeag. If this element is not part of a heap, this index is 0.

methods
void
set_index int index

in_heap heap;

Set theheap_index toindex , without checking théeap .

164

Chapter 8. Unittom

int
index_in_heap heap;

Return theheap_index , assuming a corretieap .

File tom/IntArray

class tom.lntArray |

inherits

State supergarray |
methods

instance (id)
with dynamic elements;

Undocumented.

instance tbm.|ntArray |

methods

protected id
initWithEnumerator erato e;

Undocumented.

Ay
at int index;

Undocumented.

byte
at int index;

Undocumented.

char
at int index;

Undocumented.

int
at int index;

Undocumented.

165

Chapter 8. Unittom

long
at int index;

Undocumented.

float
at int index;

Undocumented.

double
at int index;

Undocumented.

int
elementByteSize;

Undocumented.

int
hash;

Undocumented.

(pointer, int)
pointerToElements (int, int) (start, len);

Undocumented.

class (BiaE])
mutableCopyClass;

Return theVutablelntArray] class.

File tom/IntDictionary

class tom.]ntDictionary |

A maps arint to an object reference.
inherits

State supergdashTable]

instance tom.lntDictionary |

methods

166

By
at int key;

Undocumented.

Enmmerator—
enumerator;

Return avalueEnumerator

Enmmeraior—
valueEnumerator;

Return an Enumerator on the values stored in this dict.

class tom.MutableIntDictionary |

inherits

State supergniDictionary , HashTableContainer

instance tbm.MutablelntDictionary |

methods

void
freeze;

Undocumented.

void
remove int key;

Remove the mapping for they .

void
set BIO value
at int key
pre
value !'= nil;

Associate th@alue with thekey .

Chapter 8. Unittom

167

Chapter 8. Unittom

File tom/IntegerRangeSet

class fom.]lhtegerRangeSet |

The[ntegerRangeSet | is good at holding ranges of integers. Ranges are stored in an unbalanced
tree. The number of ranges dictates the memory usage by the set. Testing for membership is O(log n)
where n is the number of ranges.

inherits
State super$tiate |, Enumerable

instance tobm.|fntegerRangeSet |

variables

[MEYErRaNgeSENTde] root;
The root of the tree holding information.

methods

boolean
add int v;

Add v to the receiving set. RetuFALSE f it was already present,RUEotherwise.

boolean
equal id other,;

Undocumented.
boolean
equallntegerRangeSetNode other;
Undocumented.
id

intersectionWith id other;

Return a new set being the intersection of the receiving set anditre set.

boolean
iISEmpty;

Undocumented.

boolean
isSubsetOf id other;

ReturnYESif the receiving set is a subset of thther set.

168

Chapter 8. Unittom

(boolean, int) (non_empty, value)
highestPresent;

Return the highest value present in the set.

(boolean, int) (non_empty, value)
lowestPresent;

Return the lowest value present in the set.

boolean
member int v;

ReturnTRUEIff the set containg .

int
nextNonPresent int i;

Return the smallest element »=that is not yet in the set.

(boolean, int)
nextPresent int i;

Return the smallest elementi >that is contained in the tree, preceded by whether such an element
actually is in the tree.

int
previousNonPresent int i;

Return the largest element «=that is not yet in the set.

(boolean, int)
previousPresent int i;

Return the largest element «=that is in the set.

boolean (b)
remove int v;

Removev from the set, returninRUEIf it was actually contained.

void
shiftFrom int i;

Increase the value of all elements in the tree >y one.

(boolean, int)
smallestElement;

Return the smallest value contained, preceded by whether we're not empty.

169

Chapter 8. Unittom

void
uniteWith id other;

Modify the receiving set by adding the elements from the other set.

CuputSrean]
write S,

Undocumented.

Emmmerator—
enumerator;

Undocumented.

protected id
initWithEnumerator Fnumerator | €;

Undocumented.

class fom.lptegerRangeSetNode |

inherits

State supergiate |

instance tbm.|ftegerRangeSetNode |

variables

id left;
The left and right subtrees.

id right;

int offset;

The offset from our parent.

int size;
The number of integers in this node.

methods

boolean
add int v;

Addyv to the tree rooted at the receiving node. Re®ikbSEif it was already presentRUEOtherwise.

170

Chapter 8. Unittom

boolean
equallntegerRangeSetNode id other;

Undocumented.

id
init (int, int) (o, s);

Designated initializer.

int
highestPresent;

Return the highest value present in the set.

int
lowestPresent;

Return the lowest value present in the set.

boolean
member int v;

ReturnTRUEIff the set containg .

int
nextNonPresent int i;

Return the smallest element »=hat is not yet in the tree.

(boolean, int)
nextPresent int i;

Return the smallest elementi>that is contained in the tree, preceded by whether such an element
actually is in the tree.

int
previousNonPresent int i;

Return the largest element «=that is not yet in the tree.

(boolean, int)
previousPresent int i;

Return the largest element in the tree which is smaller than

(id, boolean)
remove int v;

Removev from the receiving tree, returning the modified tree, aRWEIf it was actually removed.

171

Chapter 8. Unittom

void
shiftFrom int i;

Increase the value of all elements in the tree >3y one.

int

smallestElement;
Return the smallest value contained.
OutputStreanm —

write S

offset int i;

Undocumented.

protected (id, id, int, int)
dissect;

Return the guts of this object.

protected (id, int)
mergeLRL int v;

Merge the subtree rooted at this node, to accomodate the wataturning the modified tree and the
extra size for our parent node. Our parent actually holds the vafas the first value).

protected (id, int)
mergeRLL int v;

Merge the subtree rooted at this node, to accomodate the wataturning the modified tree and the
extra size for our parent node. Our parent actually holds the vafas the last value).

protected void
offset int n;

Adjust theoffset by n.

protected void
set_right id n;

Set theright node.

protected void
setRightMost id r;

Set the right most node of the receiving tree to

172

Chapter 8. Unittom

class fom.lptegerRangeSetNodeEnumerator |

inherits

State super$gtate], Enumerafor

instance tbm.|htegerRangeSetNodeEnumerator |

variables

MEYETRANJESEINOde—] root;
The root of the tree of nodes.

int previous;
The previous integer value retrieved.

methods

id
init r

Undocumented.

(boolean, NUmMben)
next;

Undocumented.

(boolean, int) (valid, value)
next;

Undocumented.

File tom/Invocation

class tom.lhvocafion |

An is an object holding a target object, a selector, and arguments to the selector. Thus,

annvocafion] holds everything needed to send a messagé¢n¥&mation | can be fired at its target
(with thefire method), or fired after retargeting (using fireAt method).

An is incomplete when not all arguments needed to send the message have been spec-
ified. An incompletdnvocation] can be fired in two different ways. First, by invokifigeWith

and supplying values for the remaining arguments. Second, by invoking a method
completing it. For example, if of the methodroid with int a do int b only

173

Chapter 8. Unittom

has a value for the argumeatthen invoking[x do 23] will (temporarily) complete th@avoca-_|
and send the full messageith do) to its target.

inherits
State super$iate]
methods

instance (id)
for selector sel
to: RBI] target = nil
with dynamic arguments;

Create a, potentially incomplete, invocation.

instance (id)
for selector sel
to: [|I] target = nil
arguments = nil;

Create a, potentially incomplete, invocation.

instance (id)
of selector sel
to: | target = nil
with dynamic arguments;

Create a complete invocation. This raisesr@gram-condition if the resulting invocation is in-
complete.

instance (id)
of selector sel
to: [AIM] target = nil
arguments = nil;

Create a complete invocation. This raisesr@gram-condition if the resulting invocation is in-
complete.

instance (id)
of selector sel
to: [|I] target = nil
using pointer ap;

Create an invocation. It shall be complete. This method is primarily intended to be useakiyin
its forwarding fromforwardSelector arguments

Arguments are to be retrieved from the list pointed to byap, i.e.va_arg (*ap, ...)

174

Chapter 8. Unittom

instance tbm.lhvacafion |

variables

[DVocationResult] result;

The result of the most recent invocation,nir if we haven't fired yet, or have fired with a void
return type (of the fire method).

pointer invocation;
The underlying invocation structure.

methods

protected id
init pointer i;

Designated initializer.

boolean
isComplete;

ReturnTRUEIff the receiving invocation is complete, i.e. is has all the arguments needed and can be
fired directly withfire or fireAt

selector
selector;

Return this invocation’s selector.

By
target;

Return this invocation’s target.

protected [NvoCcafionRESUlt
forwardSelector selector sel
arguments pointer ap;

Forward the selectarel with the arguments pointed to by the list pointed to byap. Return the
result of the invocation.

Only the incoming arguments fromap will be retrieved, so that subsequesat arg invocations on
*ap can retrieve the outgoing argument pointers.

This method is invoked by the runtime library in an attempt to forward a message not directly imple-
mented by the receiver. This method is used since it is faster tfwmwadinvocation

boolean
invocationp;

175

Chapter 8. Unittom

ReturnYES

IVOCaAnonRESI——]
fire;

Perform the invocation. If invoked repeatedly, the invocation will be performed repeatedly.

void
fire;

Similarly, but avoid the creation of gnvocationResult]. Theresult of the receiving invocation
is set tonil

IVOCAnoNRESIT——]
fireAt BT target;

Perform the invocation after setting the receiver of this invocatiaartgt

void
fireAt BT target;

Similarly, but avoid the creation of dnvocafionResult___|. Theresult of the receiving invocation

is set tonil

fireWith dynamic arguments;

Perform the invocation resulting from completing this invocation withdlgments . Return the
result. The receiving invocation will remain incomplete.

void
fireWith dynamic arguments;

Similarly, but avoid the creation of gavocafionResulf . Theresult of the receiving invocation
is set tonil

Ay
objectAfterFire;

Shortcut to fire and return the first element of the result as an object.

ATy
objectOfResult;

Shortcut to retrieve the first element of the result as an object. This fires if needed.

[MVOCATNONRESIT]
result;

176

Chapter 8. Unittom

If the invocation has been fired at least once, return the (most recent) result. Otherwise, fire and return
the result.

-

resultTypeDescription;

Return the type description of the result from this invocation.

void
encodeUsingCoder coder;

Undocumented.

void
initWithCoder coder;

Undocumented.

protected void
encodeToCoder coder;

Private method to do the hard work of encoding all information carried by this invocation.

protected void
decodeFromCoder coder;

Private method to do the hard work of decoding all information fronctider into the invocation.

void
dealloc;

Deallocate the structure underlying the invocation.

void
gc_mark_elements;

Mark the objects in this invocation’s arguments.

File tom/InvocationResult

class tom.lavacafionResulf |
inherits

State super$taie |, Constants
methods

protected instance (id)

177

Chapter 8. Unittom

with pointer result;

Return a freshly allocated instance with thsult , which is astruct trt_invocation_result

instance tom.lhvacationResult |

variables

pointer values;
The actual result.

methods

protected id
init pointer result;

Designated initializer.

dynamic
components;

Retrieve all values from this result. The expected return type must fully match the actual return type.

dynamic
component int n;

Retrieve thenth element from the result. The index of the first element is 0.

The expected return type must fully match, or can be an object, in which case numeric values are
returned in instance, and selectors irSalector . Pointer values on a mismatch cause a
condition to be signaled.

int
length;

Return the number of elements in this result.
void

setReturnValues (pointer, pointer) (first_value, extra_values)
forSelector selector sel;

From the values held by thisvocationResult], update théuiltin_return_type value pointed
to byfirst_value , and any extra return value pointers as pointed to bydhkst extra_values
CYpEDESTHpion__]

typeDescription;

Return a th@ypeDescripfion for this result.
OutputStreanm—]

178

Chapter 8. Unittom

writeFields S;
Output the elements in this result.

void
dealloc;

Free thevalues .

void
gc_mark_elements;

Mark the objects in this result.

void
encodeUsingCoder coder;

Undocumented.

void
initWithCoder coder;

Undocumented.

protected void
encodeToCoder coder;

Private method to do the hard work of encoding all information carried by this result.

protected void
decodeFromCoder coder;

Private method to do the hard work of decoding all information fronctiter into this result.

File tom/Limits

class tom.llimifs |

After discussion on the TOM mailing list in April 2000, it was apparent that a <limits.h> equivalent
is useful even when the values are the same on every platform.

variables

const BYTE_MIN = 0;

179

const BYTE_MAX = 255;

const CHAR_MIN = 0;

const CHAR_MAX = 65535;

const INT_MIN = -2147483648;

const INT_MAX = 2147483647,

const LONG_MIN = -9223372036854775808;

const LONG_MAX = 9223372036854775807;
instance tom.1imits |

File tom/Lock

class

The abstract lock.

inherits

State super$tate |

instance tom.Llock]

methods

deferred void
lock;

Undocumented.

deferred void

Chapter 8. Unittom

180

unlock;
Undocumented.

deferred boolean
tryLock;

Try to lock, and returrvESif it succeeded.

(result)
doWhileLocked BIock] block;

Lock, execute thélock , and guarantee to unlock.

class fom.SimpleLock |

A simple lock is a binary lock.

inherits
State supergock]

instance tbm.SimpleLock |

variables

pointer lock;
The underlying lock.

methods

void
dealloc;

Undocumented.

id
init;

Designated initializer.

void
lock;

Undocumented.

void
unlock;

Undocumented.

Chapter 8. Unittom

181

Chapter 8. Unittom

boolean
tryLock;

Undocumented.

class tom.Recursivel ock |

A recursive lock is a binary lock which can be obtained multiple times by the same thread.

inherits

State supergock]

instance tom.Recursivel ock |

variables

pointer lock;
The underlying lock.

methods

void
dealloc;

Undocumented.

id
init;

Designated initializer.

void
lock;

Undocumented.

void
unlock;

Undocumented.

boolean
tryLock;

Undocumented.

182

Chapter 8. Unittom

class fom.$emaphore |

A semaphore is a lock which can be locked a humber of times (1 for a binary semaphore) before the
next attempt to lock will block.

When allocated first, the firgick will block.

inherits

State supergock]
methods

instance (id)
new int num;

Return a nevBemaphore], the firstnum lock operations will succeed.

Instance tbm.8emaphore |

variables

pointer sem;
Pointer to the underlying structure.

methods

void
dealloc;

Undocumented.

id
init int num;

Designated initializer.

id
init;

Another initializer.

void
lock;

Undocumented.

void
unlock;

Undocumented.

183

Chapter 8. Unittom

boolean
tryLock;

Undocumented.

File tom/MutableArray

class tom.NMutableArray |

inherits

State superdarray |, Mufablelndexed |

methods

instance (id)
withCapacity int cap;

Return a new instance of the receiving class which can tegddelements without the need for resiz-
ing.

instance tom.MutableArray |

variables

public int capacity;
The capacity of the array.
methods

void
add A object;

Store theobject at the end in the receiving array. If the receiving array stores unboxed values, the
object is queried for its value.

(int, int)
adjustMutableRange (int, int) (start, len);

Adjust the rangestart , len) to fit the capacity of the receivirfdutableArray . If len ==-1,itis
adjusted to fit the capacity.
void
empty
post
length == 0;

184

Chapter 8. Unittom

Empty the receiving array. This frees any storage used by the array to store its elements.

deferred id
initWithCapacity int capacity;

Initialize the newly allocated receiving object to be able to halgacity items without needing to
resize.
id
initWith int n
at pointer addr;

Initialize with the indicated pointer and integer for contents and length.cabacity is set to the
length

deferred void
insert BI] object
at int index
pre
index >= 0 && index <= length;

Insert theobject at theindex , shifting the objects at that or a higher index up by 1 position.

deferred AYaLY
removeAt int index;

Remove the element froindex , decreasing the index of all elements aftefex , and return the
element boxed. If the receiving array stores unboxed values, such as integers, the value returned is the
element boxed.

void
removeElementAt int index;

Remove the element fromdex , decreasing the index of all elements aftelex .

deferred void
removeElements (int, int) (start, length);

Remove théength elements fronstart . If length == -1, all elements fromstart are removed.
void

resize int to
pre

to >= 0;

Adjust the size of the array, filling any newly created entries with the default value for the type (i.e.
0).

deferred void
resize (int, int) (start, num);

185

Chapter 8. Unittom

Adjust the size of the array by insertimgm new entries astart filling newly created entries with
the default values for the type (i.e. 0).

void

truncate int new_length
pre

new_length >= 0;

Adjust the length of this array teew_length
void

bubbleSortUsingKey selector key
comparator: selector cmp = selector (int compare All);

Bublesort the receiving array on tlkey of the contained elements by comparing them using the
compare selector.

void

quickSortUsingKey selector key
comparator: selector compare = selector (int compare All);

Quicksort the receiving array on they of the contained elements by comparing them using the
compare selector.

id
initCopy;

In addition to what ousuper does, adjust our (nevegrpacity to fit ourlength

File tom/MutableByteArray

class tom.MutableByteArray |

inherits

State supergyieArray |, MutableArray |, DutputSiream |

instance tbm.MutableByteArray |

methods

void
add byte b;

Undocumented.

void

186

Chapter 8. Unittom

freeze;
Undocumented.

id
initWithCapacity int capacity;

Undocumented.

protected id
initWithEnumerator Enumerafor 1 e;

Undocumented.

byte
removeAt int index;

Undocumented.

Ay
removeAt int index;

Undocumented.

void
removeElements (int, int) (start, length);

Undocumented.

void
resize (int, int) (start, num);

Undocumented.
void
set byte b

at int index;

Undocumented.
void

set char ¢

at int index;
Undocumented.
void

set AI] object

at int index;

Undocumented.

187

void
swap (int, int) (i, j);

Undocumented.

void

initWithCoder coder;

Undocumented.
void
close;
Undocumented.
int
readRange (int, int) (start, num)
fromByteStream f;
Undocumented.
int

readRange (int, int) (start, num)
fromByteArray source

to int position;
Undocumented.

void
write byte b;

Undocumented.

int
write byte b;
Undocumented.
int
writeBytes int num
from pointer address;
Undocumented.
int
writeBytes int num
from pointer address

at int offset;

Undocumented.

Chapter 8. Unittom

188

Chapter 8. Unittom

class taom.IDafa |
inherits
State supergviutableByteArray |

instance tbm.Dafa |

File tom/MutableByteString

class fom.MutableByteString |

inherits

State super®yieSiring__|, MutableString__|, MutableByieArray |

instance tbm.MutableByteString |

methods

void
freeze;

Undocumented.

BYtesSTing—]

frozen;
Undocumented.

protected id
init (pointer, int) (p, num);

Undocumented.

id

initCopy (pointer, int) (p, num);
In addition to what ousuper does, adjust our (neverpacity to fit ourlength
void

set char c

at int index;

Set the byte aihdex to the character, converted to &yte according to thelefault_encoding

void
add char c;

189

Chapter 8. Unittom

Add the byte encoding of thehar ¢ to this string.

BYESTing]
substring (int, int) (start, len);

Override theByteString | implementation of thisubstring method, since that actually employs
objects which we can't use.

File tom/MutableCharArray

class fom.MutableCharArray |

inherits

State supergharArray |, MutableArray |

instance tom.MutableCharArray |

methods

void
add char c;

Undocumented.

void
freeze;

Undocumented.

id
initWithCapacity int capacity;

Undocumented.

protected id
initWithEnumerator Fnumerator | €;

Undocumented.

char
removeAt int index;

Undocumented.

void
removeElements (int, int) (start, length);

190

Chapter 8. Unittom

Undocumented.

void
resize (int, int) (start, num);

Undocumented.
void
set char ¢

at int index;

Undocumented.

L NAariNimoer|

removeAt int index;

Undocumented.
void
set QAI] object
at int index;

Undocumented.

void
swap (int, int) (i, j);

Undocumented.

File tom/MutableCharString

class tom.MutableCharString |

inherits
State supergharString__|, MutableString , MutableCharArray

instance tbm.MutableCharString |

methods

void
freeze;

Undocumented.

protected id
init (pointer, int) (p, num);

191

Chapter 8. Unittom

Undocumented.

File tom/MutableDoubleArray

class tom.MutableDoubleArray |

inherits

State super{oubleArray |, MutableArray |

instance tbm.MutableDoubleArray |

methods

void
add double d;

Undocumented.

void
freeze;

Undocumented.

id
initWithCapacity int capacity;

Undocumented.

protected id

initWithEnumerator e;
Undocumented.
double

removeAt int index;
Undocumented.

By
removeAt int index;

Undocumented.

void
removeElements (int, int) (start, length);

Undocumented.

192

Chapter 8. Unittom

void
resize (int, int) (start, num);

Undocumented.
void
set double d

at int index;

Undocumented.
void
set QAI] object
at int index;

Undocumented.

void
swap (int, int) (i, j);

Undocumented.

File tom/MutableFloatArray

class tom.NutableFloatArray |

inherits

State super$tloatArray |, MutableArray |

instance tbm.MutableFloatArray |

methods

void
add float f;

Undocumented.

void
freeze;

Undocumented.

id
initWithCapacity int capacity;

Undocumented.

193

Chapter 8. Unittom

protected id
initWithEnumerator Enumerator | €,

Undocumented.

float
removeAt int index;

Undocumented.

By

removeAt int index;
Undocumented.

void
removeElements (int, int) (start, length);

Undocumented.

void
resize (int, int) (start, num);

Undocumented.
void

set float f

at int index;
Undocumented.
void

set QAI] object

at int index;

Undocumented.

void
swap (int, int) (i, j);

Undocumented.

File tom/MutablelntArray

class tom.MutablelntArray |

inherits

194

Chapter 8. Unittom

State supergnfArray |, MutableArray |

instance tbm.MutableInfArray |

methods

void
add int i

Undocumented.

void
freeze;

Undocumented.

id
initWithCapacity int capacity;

Undocumented.

protected id
initWithEnumerator e;

Undocumented.

int
removeAt int index;

Undocumented.

By

removeAt int index;
Undocumented.

void
removeElements (int, int) (start, length);

Undocumented.

void
resize (int, int) (start, num);

Undocumented.
void

set int i
at int index;

195

Chapter 8. Unittom

Undocumented.
void
set QAI] object
at int index;

Undocumented.

void
swap (int, int) (i, j);

Undocumented.

File tom/MutableObjectArray

class fom.MutableObjectArray |

inherits

State supergbjeciArray |, MuiableArray |

methods

instance (id)
with int num
copies [AI] o;

Return a newly allocatefilufableObjectArray | with num copies of the object reference Sinceo
is a reference to an actual object, onlyn copies of that reference are stored: the object is not copied
at all.

instance tbm.MutableObjectArray |

methods

void
freeze;

Undocumented.

id
initWithCapacity int capacity;

Undocumented.

protected id
initWithEnumerator e;

196

Undocumented.
void
insert RAI] object
at int index;

Undocumented.

Ay
removeAt int index;

Undocumented.

void

removeElements (int, int) (start, length);

Undocumented.

void
resize (int, int) (start, num);

Undocumented.
void
set QAI] object

at int index;

Undocumented.

void
swap (int, int) (i, j);

Undocumented.

void
encodeUsingCoder coder;

Undocumented.

void
initWithCoder coder;

Undocumented.

Chapter 8. Unittom

197

Chapter 8. Unittom

File tom/MutablePointerArray

class tom.NutablePointerArray |

inherits

State supergZoinierArray |, MufableArray |

instance tbm.MutablePointerArray |

methods

void
add pointer d;

Undocumented.

void
freeze;

Undocumented.

id
initWithCapacity int capacity;

Undocumented.

protected id

initWithEnumerator e;
Undocumented.
pointer

removeAt int index;
Undocumented.

By
removeAt int index;

Undocumented.

void
removeElements (int, int) (start, length);

Undocumented.

void
resize (int, int) (start, num);

198

Chapter 8. Unittom

Undocumented.
void
set pointer d
at int index;
Undocumented.
void
set QAI] object
at int index;

Undocumented.

void
swap (int, int) (i, j);

Undocumented.

File tom/MutableString

class fom.MutableString |

inherits

State supergiring_|, MutableArray |

instance tbm.MutableString |

methods

deferred void
set char ¢
at int i;

Undocumented.

File tom/Number

class tam Nlumber]

inherits

State super$iate]
methods

199

Chapter 8. Unittom

instance (id)
with byte value;

Undocumented.

instance (id)
with char value;

Undocumented.

instance (id)
with int value;

Undocumented.

instance (id)
with long value;

Undocumented.

instance (id)
with float value;

Undocumented.

instance (id)
with double value;

Undocumented.

instance tom.Number |

methods

deferred byte
byteValue;

Undocumented.

deferred char
charValue;

Undocumented.

deferred int
intValue;

Undocumented.

deferred long

200

Chapter 8. Unittom

longValue;
Undocumented.

deferred float
floatValue;

Undocumented.

deferred double
doubleValue;

Undocumented.

int
hash;

Undocumented.

boolean
equal n;

Undocumented.

deferred int
compare n;

Undocumented.

deferred int
compare byte v;

Undocumented.

deferred int
compare char v;

Undocumented.

deferred int
compare int v;

Undocumented.

deferred int
compare long v;

Undocumented.

deferred int
compare float v;

201

Chapter 8. Unittom

Undocumented.

deferred int
compare double v;

Undocumented.

deferred protected id
init byte value;

Undocumented.

deferred protected id
init char value;

Undocumented.

deferred protected id
init int value;

Undocumented.

deferred protected id
init long value;

Undocumented.

deferred protected id
init float value;

Undocumented.

deferred protected id
init double value;

Undocumented.

boolean
dump_simple_p;

Undocumented.

File tom/ObjectArray

class tom.[DbjectArray |

inherits

202

Chapter 8. Unittom

State supergarray |
methods

instance (id)
with dynamic elements;

Undocumented.

instance tbm.bjectArray |

methods

protected id

initWithEnumerator Fnumerator | €;
Undocumented.
int (v)

hash;

Hash some elements.

boolean
equal id other;

Compare the elements.

By

at int index
pre

index >= 0 && index < length
post

length == old length;
Return the object abhdex in the receiving array.

boolean
dump_self_p;

ReturnTRUE

void
dumpSelf done
indent prefix
simple boolean allow_simple
level int level
to

ouputsStream] S,

Dump the elements to the stream

203

Chapter 8. Unittom

int
elementByteSize;

Undocumented.

(pointer, int)
pointerToElements (int, int) (start, len);

Undocumented.

protected void

setDuringConstruction (int, BI]) (index, object)
pre

index >= 0 && index < length;

Set theobject at theindex in the receiving array, even if it is not a mutable array. This method
/must/ only be used during construction of a constant array object.

class (BaE])
mutableCopyClass;

Return théviutableObjectArray class.

id
deepen int level
mutably: boolean mutable_p = NO;

Deepen this copy.

void
encodeUsingCoder coder;

Undocumented.

void
initWithCoder coder;

Undocumented.

redefine void
gc_mark_elements;

This method is invoked by the garbage collector to have the receiving object mark the elements it
references. ADbjectArray | must reference the objects it holds.

204

Chapter 8. Unittom

File tom/Pointer

class tom.Painter |
ThisPointer_] class is a simple object wrapper around an object value.
inherits
State supergiate]
methods
int (result)

hash pointer p;
Hash the pointep. This hashes the pointer in a way similar to tlaehq method ofAll].

instance (id)
with pointer p;

Simple allocator.

instance tbom.Hainfer |

variables

public pointer value;
Our value.

methods

id (self)
init pointer p;

Designated initializer.

boolean
dump_simple_p;

ReturnYES

boolean
equal other;

Compare ouvalue with theother 's.

int
hash;

Return the hashed pointedilue .

205

Chapter 8. Unittom

OutputStrean]
write s,

Similar to aNumbet], aPointer | simply outputs thevalue .

File tom/PointerArray

class fom.PointerArray |

inherits

State supergarray |
methods

instance (id)
with dynamic elements;

Undocumented.

instance tbm.HointerArray |

methods

protected id
initWithEnumerator Enumerator 1 €;

Undocumented.

Ay
at int index;

Undocumented.

pointer
at int index;

Undocumented.

int
elementByteSize;

Undocumented.

(pointer, int)
pointerToElements (int, int) (start, len);

Undocumented.

206

Chapter 8. Unittom

class (Bm@iEe])
mutableCopyClass;

Return theMutablePointerArray] class.

File tom/PointerDictionary

class tom.RointerDictionary |
A PonterDictionary | maps gointer to an object reference.

inherits

State supergqHashTable], DictionaryContainer

instance tbm.HointerDictionary |

methods

By
at pointer key;

Undocumented.

class tom.NlutablePointerDictionary |

inherits
State supergZointerDictionary , MutableEqHashTable

instance tbm.MutablePointerDictionary |

methods

void

remove pointer key;
Remove the mapping for they .
void

set BIO value

at pointer key
pre

value != nil;

Associate thealue with thekey .

207

Chapter 8. Unittom

File tom/Queue

class tom.Queue |

The abstract Queue class. There is not much you can do with it as queue has to be mutable to do
anything useful.

inherits

State supergndexed |

instance tom.Queue |

methods

boolean
queuep;

Return TRUE.

deferred boolean
emptyp;

Return TRUE for empty queues.

class tom.MutableQueue |

inherits

State supergQueued, Mufablelndexed

instance tom.MutableQueue |

methods

deferred void
add object;

Push an object to the head of the queue.

deferred YAV
pop;

Pop the object from the tail of the queue.

class tom.NutableObjectQueue |

inherits

State supergviutableQueue |, Conditions

208

Chapter 8. Unittom

instance tbm.MutableObjeciQueue |

variables

int offset;

The index into thecontents of the elemenself[0]

int elements;

The number of elements.

MUtableObjeCAIray] contents;
The array holding the actual objects.

methods

By

at int index
pre

index >= 0 && index < elements;
Undocumented.
void

set QAI] object

at int index

pre
index >= 0 && index < elements;

Undocumented.

int
length;

Undocumented.

void
add object;

Add theobject to the end.

boolean
emptyp;

Undocumented.

By
pop;

Retrieve the object aklf[0] and remove it. All in constant time, of course.

209

Chapter 8. Unittom

id (self)
empty;

Make the queue empty.

File tom/Random

class tom. Randaom]

inherits

Behaviour supergll |

instance tbm.Random |

inherits
Behaviour super@ll |

methods

deferred double
next;

Return a double random number.

deferred int
next;

Return an integer random number.

int (result)
next int limit
pre
limit > 1
post
result >= 0 && result < limit;

Return a number in the range [0, limit).

class fom.lhtegerRandom |

Superclass for use by random number generators which customarily return ints.

inherits

State superg¥andor

210

Chapter 8. Unittom

instance tbm.|ftegerRandom |

methods

double
next;

Return the next double value, in the range [0, 1.0).

class tom.[houbleRandom |
Superclass for use by random number generators which customarily return ints.
inherits
State supergRandon,

instance tom.DaoubleRandom |

methods

int (result)
next;

Return the next integer value, in the range [0, INT_MAX].

class tom.MinimalRandom |

MinimalRandom implementBitegerRandom |. It uses seeds to generate a repeatable sequence of
pseudo-random integers.

inherits
State super$taie], [nfegerRandom
variables

const ia = 16807;
Constants needed by the algorithm.
const im = 2147483647,

const iq = 12773;

const ir = 2836;

211

Chapter 8. Unittom

instance tom.MinimalRandom |

variables

int seed;
The seed from which we feed.

methods
id (self)

init int initial_seed
pre

initial_seed > 0;

Designated initializer.

id
init;

Initialize this instance with a seed derived from the current moment in time artchthg value of
self .

int
next;

Return the next random positive value.

File tom/RandomDouble

class tom.Ranecu]

This is a Random number generator called Ranecu. A lot of the actual code was borrowed from the
RngPack 1.0 Java package by Paul Houle.

This is a quote from the "Ranecu.java:

"Ranecu is an advanced multiplicative linear congruential random number generator with a period of
aproximately 10e18"

References:
http://www.msc.cornell.edu/~houle/rngpack

F. James, "Comp. Phys. Comm." 60 1990 p 329-344 P. L‘'Ecuyer, "Commun. ACM." 1988 1988 p
742.

inherits

State super$tate], DoubleRandom

212

Chapter 8. Unittom

variables
const DEFSEED1 = 12345;
Default seeds.

const DEFSEED2 = 67890;

methods

instance (id) (r)
new;

Return a newly allocated instance, initialized with a random seed.

instance (id)
newWithDefault;

Return a newly allocated instance, initialized with a default seed.

instance (id)
newWithSeed int seed;

Return a newly allocated instance, initialized with the speciusd .

instance tbm.Ranecu |

variables
int iseedl;
The seed.

int iseed2;

methods

id (self)
initWithSeed (int, int) (sl, s2);

Designated initializer.

id
init;

Default initializer.

id

213

Chapter 8. Unittom

initWithSeed int seed;
Short initializer.

id
initwith d;

Initialize with the dated.

double
next;

Undocumented.

double
raw;

Undocumented.

long
getSeed,;

Undocumented.

class tom.Ranlux]

This is a Random number generator called Ranlux. A lot of the actual code was borrowed from the
RngPack 1.0 Java package by Paul Houle.

References:

http://www.msc.cornell.edu/~houle/rngpack F. James, "Computer Physics Communications" 79 (1994)
111 http://www.camk.edu.pl/~tomek/html.refs/ranlux.f90_2.html.

inherits
State super$taie], DoubleRandom
variables

const maxlev = 4;

Maximum luxury level.

const Ixdflt = 3;

Default luxury level.

const igiga = 1000000000;

214

Chapter 8. Unittom

const jsdflt = 314159265;

const twopl2 = 4096;

const itwo24 = 1 << 24,

const icons = 2147483563;

methods

instance (id) (r)
new;

Undocumented.

instance (id)
newWithDefault;

Undocumented.

instance (id)
newWithSeed int seed;

Undocumented.

instance tom.Ranlux |

variables

MutablelntArray] iseeds;

VUutablelntArray] isdext;

MUTEDISIMTATray— next;

int luxlev;

215

Chapter 8. Unittom

int nskip;

int inseed;

int jseed,;

int in24;

int kount;

int mkount;

int i24;

int j24;

seeds;

float carry;

float twom24;

float twom12;

ndskip;

methods

id (self)
init;

216

Chapter 8. Unittom

Undocumented.

id (self)
initWithSeed int ins;

Undocumented.
id (self)
initWithSeed int ins
atLux int lux;

Undocumented.

void
initLux;

Undocumented.

void
initArrays;

Undocumented.

double
next;

Undocumented.

double
raw;

Undocumented.

void
rluxdef;

Undocumented.

void
rluxgo (int, int) (lux, ins);

Undocumented.

class tom- Ranmar |

This is a Random number generator called Ranmar. A lot of the actual code was borrowed from the
RngPack 1.0 Java package by Paul Houle.

This is a quote from the "Ranmar.java" :

217

Chapter 8. Unittom

"[Ranmar] is a lagged Fibonacci generator proposed by Marsaglia and Zaman and is a good research
grade generator.”

References:

http://iwww.msc.cornell.edu/~houle/rngpack.

inherits
State super{doubleRandom], Stafe
variables

const DEFSEED = 54217137,

Default seed.

const BIG_PRIME = 899999963;

The 46,009,220th prime number, the largest prime less than 9*10e8. Used as a modulus because
this version oRANMAReeds a seed between 0 and 9*10e8&i@d PRIME isn't commensurate
with any regular period.

methods

instance (id) (r)
new;

Undocumented.

instance (id)
newWithDefault;

Undocumented.

instance (id)
newWithSeed int seed;

Undocumented.

instance tbom.Ranmar |

variables

MUTableDoubleAray 1 u;

MUtableCoubleATay] uvec;

218

double c;

double cd;

double cm;

int i97;

int jO7;

methods

id (self)
init;

Undocumented.

id (self)
initWithSeed int seed;

Undocumented.

id (self)
initwith d;

Undocumented.

void
ranmarin int ijkl;

Undocumented.

double
next;

Undocumented.

double
raw;

Undocumented.

Chapter 8. Unittom

219

Chapter 8. Unittom

File tom/Runtime

class tom.Runfime]

The Runtime class provides an interface to the functionality in the runtime library and other process
related information.

Most variables of thRunfime | class are nqgtublic , since they can be accessed by simply inheriting
RIMMME].

inherits

State supergondiions |, Constants_|, Eidio_]

variables

static hostname;

The name of the host on which this program is running.

static public program_name;

The name under which this program was invoked (i.e. the basename of argv[0] in C).

static public long_program_name;

The long program name (i.e. argv[0] in C).

static arguments;

The arguments as passedtain .

static all_arguments;

All the arguments, before anyad method modified it.

static environment;

The environment.

static private main_resource_dir;

The directory holding the main resources, at least including the character encodings.

static private classes_by_name;

The dictionary of classes. Mapping from name to array of classes with that name. Since this is
created upon request and it is reset by dynamic loading, it is not publicly available. Access it
through theclasses_by name method.

static private int quit_inhibit;

Iff 10, quit (SIGINT , the user interrupt signal) is inhibited.

220

Chapter 8. Unittom

static boolean quit_pending;

Iff 10, a signal-int will be raised whemuit_inhibit andpanic_mode again reach 0.

static int panic_mode;
Iff 10, any signal received (excluding the interrupt signal), other condition signaled or raised, or
any object thrown will simply cause an abort. This is used to protect critical sections in the run-
time, such as during garbage collection or object allocatigraric_mode is setquit_inhibit
is implicitly set too.

static boolean core_on_fatal,

Iff TRUE a corefile will be produced on fatal errors, such as uncaught condition raises.

static boolean stacktrace on_fatal;
Iff TRUE a stacktrace will be printed on fatal errors, such as uncaught condition raises. This
facility is dependent upon the stacktrace generation being implemented on the platform in use.
static int gc_alloc_since_partial;
The number of objects allocated since the last partial garbage collection run. In this respect, a
partial run completing a full run is still considered a partial run.
static int gc_alloc_since_total,

The number of objects allocated since the previous completed run. This excludes the objects
counted byyc_alloc_since_partial ; it is adjusted after a run is initiated, before the run is
actually started.

static boolean gc_stat_at_exit;

Iff TRUEStatistics on memory usage and the garbage collector will be emitted upon exit.

static boolean rt_stat_at_exit;

Iff TRUEOutput statistics on the runtime structures at exit.

static boolean rt_num_inst_at_exit;

Iff TRUEoutput the number of live instances of each class at exit.

static int gc_num_runs;

Statistics on the garbage collector and allocator, in order: the number of gc runs; the number of
runs which complete a full run; the number of object allocated; the number of objects deallo-
cated; the (real, i.e. elapsed) time spent protecting, marking, and sweeping; and the time spent in
all of gc (this is the sum of the previous three, plus overhead).

static int gc_num_complete;

221

Chapter 8. Unittom

static long gc_num_alloc;

static long gc_num_dealloc;

static double gc_total_protect;

static double gc_total_mark;

static double gc_total_sweep;

static double gc_total_all;

static int malloc_cur_bytes;

These numbers are only maintained if the runtime library was not instructed to not do so at
compile time.

static int malloc_max_bytes;

static int malloc_cum_bytes;

static int malloc_cur_items;

static int malloc_max_items;

static int malloc_cum_items;

static int gc_inhibit;

Iff 10, garbage collection won't be run. This is important during, for instance, enumerating a
Container, since (most) enumerators can not handle the collection changing while they are enu-
merating.

222

Chapter 8. Unittom

static private boolean gc_atomic;

Iff TRUE(the default), garbage collection will run atomically, irrespective of the time constraint
argument taarbageCollect . When running with atomic garbage collection, new objects are
white (presumed dead) whereas with non-atomic garbage collection, new objects are gray (pre-
sumably alive).

A program using atomic garbage collection needs less memory, since only one run is needed to
reclaim a dead object, instead of two runs. It also means that, for example, in a multi-threaded
program, the thread doing garbage collection will block all other threads.

static boolean gc_atomic_next;
The desired value afc_atomic , which will take effect after the next GC run. Default is what-
ever the value ofic_atomic was at startup.

static boolean gc_full_at_exit;

Iff TRUEall garbage will be cleaned upon exit. This is a debugging tool mostly.

static int gc_debug;
The level of debugging garbage output by the garbage collector. Information is ougpigrto
stream provided by the C library. No information will be outpuwdf debug is O or if the runtime
was not compiled with the appropriate flags.

static int gc_partial_threshold;

Threshold forgc_alloc_since_partial before a garbage collection run will be initiated. If
gc_partial_threshold is 0, garbage collection is never run implicitly. The default value is
25000, or the value passed:gs-pth on the command line.

static double gc_partial_time_limit;
The time allowed for a partial garbage collection run when initiategidbwilloc_since_partial
exceedingyc_partial_threshold . The default is 0, implying no time limit.

static int gc_total_threshold;

When a partial garbage collection runis initiated gadalloc_since_total exceedgc_total_threshold
thegc_partial_time_limit is ignored and instead thye_total_time_limit is used. If
gc_total_threshold is 0, itis ignored.

static double gc_total_time_limit;

The time limit used in case the condition describedgrtotal_threshold applies.

static boolean preconditions_enabled,;

Iff TRUE preconditions are checked.

223

Chapter 8. Unittom

static boolean postconditions_enabled;

Iff TRUE postconditions are checked.

static boolean rt_print_signals;
Iff TRUE unhandled signals are printed [itdio err] . This is for debugging purposes.
methods
int
start (BI], selector) (object, sel)

arguments QTay] arguments;

This method is invoked by the runtime library. Its main responsibility is to invoke the real main
method, which is identified by the=l andobject

void
exit int rc;

Normal level exit. Cleaning up will be performed.

void
fastExit int rc;

Low level exit. Usual functionality for cleaning up is avoided.

void
unhandledSignal condition;

Output information on the unhandled sigeahdition on([stdio err]

void
WillExit int rc;

Perform all things necessary for a clean exit. This runs the garbage collector if specifiegcby a
exit , dumps gc statistics if specified lyc-stat , number of instances if specified byinst ,
and memory overhead information if specified:hstat

CutputStrean—]
help S
done done;

Output help information about the facilities (most notably ‘" arguments) offered by the receiving
class, on th@ufputStream] s.

Any implementation should add itself to the skte, and check for presence before outputting
anything, to avoid generating the same output for every subclass not overriding this method.

void
load arguments;

224

Chapter 8. Unittom

Scan the arguments to the program for something telling us whether or how to do certain things.
See the output ahelp of any TOM program for short information on the options.
void
preload arguments;
Invoked by the runtime library before the first load is invoked.

This method is needed for two occasions: first is to checkhfgp . The reason this is not done in
load is to be able to get some help before any negative side effects ¢dahymethod. The second
reason is for findingrt-resource-dir , Which must be done befoBteString__|'s load method
can play with its encoding.

void
reportNuminstances putputStream 1 S
includeZeroes: boolean zeroes = FALSE;

Output to the stream the number of live instances for each class. If the optiaaales is TRUE
classes with zero instances are included in the report. This includes deferred classes, as they cannot
have any instances.

protected void
runtimeStatistics S;

Output the actual statistics fat-stat to the streans.

(laTe 12> (=To |
classes;

Return the array of all class objects.

Mapped

classes_by_name;
Return the, possibly created upon request, mapped collection of classes keyed on their name.

class (Btate]) (class_object)
classNamed name;

Return the class with theame.

Name may be unqualified, as'iRuntime" , which will return the single class with that name pir
in case such a class does not exist, or if more than one class with that name exists in multiple units.

Thename may be qualified, as ittom.Runtime” , in which case th®unfime] class of theom unit
will be returned, if that unit and class within that unit exist.

selector
selectorNamed name;

225

Chapter 8. Unittom

Return the existing selector known by thame.

boolean
selector selector sl
equals selector s2;

ReturnTRUEIff the selectors1 ands2 denote the same selector.

Brmg—]

nameOfSelector selector sel;
Return the name of theelector

selector
nullSelector;

Return the invalid selector.

void
garbageCollect;

Run the garbage collector to the end of a full garbage collection run.

void

garbageCollect double time
pre

gc_atomic -> ltime;

Run the garbage collector for at maiste seconds.

void
disableGC
pre
gc_inhibit >= 0
post
gc_inhibit == old gc_inhibit + 1;

Increase thgc_inhibit . This invocation should be matched by an invocatiorrafoleGC .

void
enableGC
pre
gc_inhibit > 0
post
gc_inhibit == old gc_inhibit - 1;

Decrease thgc_inhibit

Mapped

environment;

226

Chapter 8. Unittom

Return the dictionary holding the process environment. The dictionary is filled upon the first request,
thread-safely.
BYESTing]

main_resource_dir;
Return thamain_resource_dir

void
setenv (Bfng_1, Bfng 1) (environment_variable, value);

Set thevalue of theenvironment_variable , thread-safely.

Shiglaromm]

hostname;

Return thehostname of this machine. If the class variable is not set, it is set once from gethost-
name(2).

Sring—]

tom_prefix;

Return the directory in which all TOM stuff has been installed. This returns the valt@wfPREFIX
in theCansfanfs—1 class.

By
perror prefix
for RBI] object
class condition_class
raise boolean not_signal;

Construct for theobject with thecondition_class and a message created from the
(optional) prefix, plus the information available from the (ANSldtho variable. Ifnot_signal

is TRUE the new condition is raised; otherwise it is signaled and the result is returned (if a return is
allowed).

int
quit_inhibit;

Accessor method faquit_inhibit which is private to th@®unfime] class to protect it against being
mutated by subclasses but which can be freely read, hence this method.

void
quit_disable;

Increase theuit_inhibit flag. Any increase should be accompanied later on by the corresponding
decrease.

void
quit_enable

227

Chapter 8. Unittom

pre
quit_inhibit > O;

Decrease thquit_inhibit flag, raising a postponsenal-int if indicated byquit_pending
int
panic_mode;

Accessor method fasanic_mode which is private to thRunfime | class to protect it against being
mutated by subclasses but which can be freely read, hence this method.

void
panic_enable;

Increase theanic_mode flag. Any increase should be accompanied later on by the corresponding
decrease.

void
panic_disable
pre
panic_mode > O;

Decrease thpanic_mode flag, raising asignal-int if requested byjuit_pending

Aray]
crawlStack;

Return the return addresses currently outstanding on the CPU stack (up to the first 100). Information
about these pointers may be obtained fi®mtime symbolinfo]

(BYfeESting 1, pointer, BYieStng__J, pointer, pointer) (file_name, base_address, sym-
bol_name, symbol_address, offset)

symbolinfo pointer address;

Return extensive symbol information on the ADDRESS.

void
printStack stream
ignoreuntil: Sting] ignore_until_symbol = "*;

Print a stack trace to dbufputStream .

instance tom.Runfime |
TheRuniime] instance is totally empty.

228

Chapter 8. Unittom

File tom/Selector

class tom.Selector]

A is an object wrapper for a selector.

inherits

State supergiate”]
methods

instance (id)
with selector sel;

Return an instance wrapping theselector sel

instance tobm.8elector |

variables

selector sel;
The selector which we wrap.

methods

id (self)
init selector s;

Designated initializer.

int
hash;

Return the identity of the selector.

boolean
equal id other,;

Return whether or not the selector wrappedsély is equal toother .

Brng]
name;

Return the name of the selector.

selector
selector;

Return the selector we wrap.

229

Chapter 8. Unittom

void
encodeUsingCoder coder;

Encode the receivingelector] object. This writes the name of the selector as the means of identify-
ing the selector upon decoding. (The selector itself can’'t be written since encoding a selector actually
encodes object.)

void
initWithCoder coder;

Initialize the receivingselector | from thecoder .

File tom/Set
class
inherits

State superg$iashTable |, Keyed

instance tom.8et |

methods

By
member BI] object;

InvokeHashTable |'s implementation.

By
memq BI] object;

InvokeHashTable |'s implementation.

EmmmmeTrator—
enumerator;

Return an enumerator on the receiving set.

EnmmmeTratior—
keyEnumerator;

Undocumented.

class tom.MutableSef |

inherits

230

Chapter 8. Unittom

State super$et], MutableHashTable |, MutableKeyed |, Container

instance tom._MufableSef |

methods

void
add A object;

Undocumented.

void
remove [RI] object;

Removeelt from the receiving set, if present.

class tom.SetEnumeraior |
inherits

State supergiashTableEnumerator

instance tom.SetEnumerator |

variables
redeclare elt;

methods

(boolean, Enyl) (valid, object)
next;

Undocumented.

File tom/Sorted

class fom.SortedKeyed |

The SortedKeyed class keeps its elements in ascending order.

inherits

State supergeyed|

231

Chapter 8. Unittom

instance tbm.JortedKeyed |

methods

deferred Enumeraior]
between (Comparable], [Comparable]) (start, last);

Enumerate the elements in an intervéll. at the either end signifies the first or the last element.

deferred YA
lowest;

Undocumented.

deferred ALY
highest;

Undocumented.

deferred redeclare AYRYY,
at object;

Undocumented.

deferred redeclare AYALY
member object;

Undocumented.

deferred redeclare AYALY
memc Comparable] object;

Undocumented.

class fom.MutableSortedKeyed |

inherits
State supergoriedKeyed |, MutableKeyed

instance tbm.MutableSortedKeyed |

methods

redeclare void
add object;

Undocumented.

redeclare void
remove object;

232

Chapter 8. Unittom

Undocumented.

class tom.SortedMapped |
inherits
State superdvapped, SorfedKeyed |

instance tom.SortedMapped |

methods

deferred Enimerator]
valuesOfKeysBetween ([Comparable], [Comparable]) (start, last)
includeLeft: boolean incleft = TRUE
includeRight: boolean incright = TRUE;

Enumerate the values in an interval.

class fom.NlutableSortedMapped |

inherits
State supergviutableSortedKeyed |, MutableMapped

instance tbm.MutableSortedMapped |

methods

deferred redeclare void
set B value
at key,

Undocumented.

class fom.SortedObjectArray |

inherits

State super{Sortedkeyed]

instance tom.SortedObjectArray |

variables
public contents;

The array we employ to actually store the contents.

methods

233

Chapter 8. Unittom

boolean (result)
verifySortedContents;

Undocumented.
id
initWithSortedEnumerator Entmeraior 1 e

post
[self verifySortedContents];

Undocumented.

id
initWithEnumerator Fnumerator | €;

Undocumented.

allKeys;

Undocumented.

(boolean, int)
indexOf object;

The guts of the binary search algorithm.

Ay
at object;

Undocumented.

Enmmerator
valuesOfKeysBetween ([Comparable], [Comparable]) (start, last)
includeLeft: boolean incleft = TRUE
includeRight: boolean incright = TRUE;

Undocumented.

By
lowest

pre
[contents length] != O;

Undocumented.
BTy
highest

pre
[contents length] = O;

234

Chapter 8. Unittom

Undocumented.

class tom.NutableSortedObjectArray |

inherits
State superdviutableSoriedKeyed |, SortedObjectArray

instance tom.MutableSortedObjectArray |

methods

void
empty;

Undocumented.

void
freeze;

Undocumented.

void
add object;

Add an object.

Note that adding elements one-by-one {dwableSortedObjectArray | will work as an insertion
sort, with quadratic performance. UaddElementsFrom with another sorted set instead, as it is
much more efficient. Also, do not ugeldElementsFromEnumerator ~ unless you know that the
enumerator is sorted (and then asielElementsFromSortedEnumerator

void
addElementsFrom object;

addElementsFrom performs in time proportional to the *sum* of the number of elements in both
collections, if the other collection is&ortedKeyed]. Otherwise the complexity is equal to the *prod-
uct* of the number of the elements.

void
addElementsFromSortedEnumerator j
post

[self verifySortedContents];
Undocumented.

void
removeElementsFrom object;

Undocumented.

235

Chapter 8. Unittom

void
removeElementsFromSortedEnumerator j
post

[self verifySortedContents];
Undocumented.

void
keepElementsFrom object;

Undocumented.

File tom/State

class

inherits
Behaviour super@l |

variables

isa;
Our class. The ‘State’ class is an instance of the State meta-class. The same is true for every
other class.

private int asi;
Information used, in cunning ways, by the runtime.

methods

instance (id)
alloc;

Return a newly created instance of the receiving class. All values, apart frasatheill have been
initialized to their default value.

instance (id)
alloc int size;

Like plainalloc , but allocate space faize bytes instead of the size of an instargiee is rounded
up if it is not large enough for an instance of the receiving class to fit.

int
instanceSize;

236

Chapter 8. Unittom

Return the size of the instances of this class. This may change due to dynamic loading if no instance
has yet been created.

boolean
classp;

ReturnTRUE since we're a class object.

boolean
coding-permanent-object-p;

ReturnYES This should not be changed; this method is used in situations where it is not known
whether the object is a class or not. In other situations, where it is known to be a class, this method is
not invoked as it is known to returyES

boolean
dump_simple_p;

ReturnYES

class (id)
kind;

Return the class of the receiving object, i.e. the valuigzof.

BYesTing—]

name;
Return the name of this class.

int (n)
num_instances;

Return the number of currently live direct instances of this class, non-transitively.
(unit)

unit
post

unit != nil;

Return the unit of this class. The postcondition states that such a unit must exit.

instance (id)
new;

Return a newly created and initialized instance of the receiving class.

OutputStreant]
write S;

237

Chapter 8. Unittom

Write a description of this class object to the stresam

instance tom_8Btafe |

inherits
Behaviour super@ll |

variables

class (id) isa;

Our class.

private int asi;
Information used, in cunning ways, by the runtime.

methods

boolean
classp;

ReturnFALSE, as we're an instance, and not a class.

protected void
dump done
indent prefix
simple boolean allow_simple
level int level

to pupuStream] s;
Hard worker fordump.

id
init;

Designated initializer. Does nothing.

class (id)
kind;

Return the class of the receiving object.

void
set_kind class (Btafe]) a_class;

Change the class of the receiving object (i.e. ithe) into thea_class . Currently both the original
and the new class must carry exactly the same state. Looser restrictions could be implemented...

OutputStrean]
write s;

238

Chapter 8. Unittom

Write the class and address of the receiving object to the stseam

OutputStreanm—]
writeFields S;

Subsidiary forwrite to allow subclasses to write their fields to the strearmhe default implemen-
tation does nothing.

void
dealloc;

Invoked by the garbage collector when an object has become garbage. Some important notes apply to
this method:

Do not message any other objects from within this method as they might have become garbage too.
Since class objects can not become garbage, it is safe to message class objects.

When overriding this method, it is not necessary to inykee |'s implementation.

void
gc_mark_elements;

This method is invoked by the garbage collector for instances which employ pointer typed instance
variables, to have the receiving object mark the elements it references through said pointers. The
default implementation marks the object referencing variables.

class tom.Recyclable |

Recyclable is the class meant to help in cases where normal garbage collection provides suboptimal
performance. It allows (but it does NOT require) manual object deallocation. To use, a simple call to
[Recyclable recycle] frees the object. Note that there is no error checking, and calling methods from
a recycled object results in an undefined behaviour.

Note that recycling is not mandatory. Unrecycled objects that are not needed any longer are freed in
the normal GC passes. It is therefore not a good idea to spend too much effort (both development and
runtime) on locating the objects that should be recycled - it is then more efficient to just rely on GC,
and it is also less bug-prone.

Also note that not all the classes should be Recyclable - it is reserved for the exceptional cases, it may
cause memory wastage, and in presence of generational GC, it may actually reduce performance.

inherits

State super$iate]
variables

recycle_bin;
The[rray | with the recycled objects of this class.

239

Chapter 8. Unittom

methods

void
load args;

Initialise therecycle_bin

instance (id)
alloc;

Override on alloc], this method tries to reuse a recycled object before allocating a fresh one.

instance tbm.Recyclable |

methods

void
recycle;

Recycle the receiving object, allowing its reuse. Since this will not zero out the memory reserved for
the object (or uninitialize it in any other way, it might be expedient (but not mandatory) to zero out
the pointers from the object, so that GC can catch the referenced memory.

File tom/StreamBuffer

class tom. BufferedStream |

inherits

State supergireamSiream |, [npufOuiputSiream |, Conditions |

variables

const DEFAULT_BUFFER_SIZE = 8192;

The default value of the default size for the buffers of our instances.

static int default_buffer_size;

The default size for the buffers of our instances. If anyone sets this to a negative number, s/he
should be ni'd.

methods

void
load arguments;

Undocumented.

240

Chapter 8. Unittom

instance tom.BufferedSiream |

variables

buffer;
The buffer we use.

int num;

The number of elements in thaffer

int next;
The index of the first character not yet handled (i.e. read or written).

methods

id

init S;
Initialize the newly allocated instance to buffer the streanith a buffer sized thdefault_buffer_size
id

init S
bufferSize int cap;

Designated initializer. Initialize the newly allocated instance to buffer the stseaith a buffer sized
cap.

int
peek;

Return the value of the next byte to be returneddagd , or -1 upon an error or end-of-file. This does
not actually read the byte.

void
unget byte b;

Stuff the byteb back (sort-of) into the stream. It will be the next byte to be read.

id
flushOutput;

Flush any bytes buffered to the stream this instance is buffering.

void
write byte b;

Write the byteb, raising astream-error ~ 0n error.

int

241

Chapter 8. Unittom

write byte b;
Write the byteb, returning 1 upon success.
int

writeBytes int length

from pointer address;

Write to this stream thiength bytes residing in memory atidress .

byte
read;

Return the next byte, raisingseream-eos upon an error or end-of-file.

int
read;

Return the value of the next byte read, or -1 upon an error or end-of-file.
int (hum_read)
readRange (int, int) (start, length)
into destination;

Read at mosength bytes into thedestination , writing them fromstart . Return the number of
bytes actually read.

protected int
readBuffer;

Fill the buffer by reading more bytes from thigeam . Return the number of bytes read.

protected int
writeBuffer;

Write any bytes needing to be output to tteam . Return the number of bytes written.

File tom/String
class

inherits

State supergndexed |, Comparable |

instance tom.Jitring |

methods

242

Chapter 8. Unittom

deferred redeclare String_|
frozen;

We'll return aString_] when frozen.

boolean
dump_simple_p;

ReturnYES
OupuStrean]
dump_simple S;

Print the receiving string, quoted.

deferred redeclare boolean
equal other;

Compare the receivingiring_] with the otheiString_].

deferred boolean
equalByteString other;

Compare the receivingiring | with the othelByteString .

deferred boolean
equalCharString other;

Compare the receivingirng | with the otheilCharString_|.

deferred boolean

equalUniqueString other;
Compare the receivingiring | with the otheilUniqueSiring .
boolean

equalModuloCase other;

Compare the receivingiring | with the otheiString_], ignoring case differences.

int
compare id other;

Compare the receivingiring_] with the other.
(int, int)

rangeOfString string
range: (int, int) (start, len) = (0, -1);

243

Chapter 8. Unittom

Return the range of the occurrence of Hiing in the receiving string. Return a negative length in
case it could not be found. The optios#drt andlength can be specified to restrict the searching
within the receiving string.

MutabteATTay—]
componentsSeparatedBy char ¢
limit: int limit = -1
excludeEmpty: boolean excl = NO
substringSelector: selector sel = selector (String substring (int, int));

Return a (mutableirray | of strings, taken from the receiving string by splitting it at characters with
the indicatedchar value. Thus, splitting ‘/usr/tmp’ at each ‘/’ returns an array holding the empty
string, ‘usr’, and ‘tmp’.

The optional argumenrimit specifies the maximum number of items in which the caller is inter-
ested, or -1 for all items. For example, if ‘/usr/foo/bar’ is split on /" in 3 items, the array returned
contains ”, ‘usr’, and ‘foo/bar’.

The optional argumerdxcl , if YES specifies that zero-length substrings are not to be included in
the result. Thus, splitting ‘/aap/noot/mies/wim’ in 3 items, ignoring empty items, returns an array
containing ‘aap’, ‘noot’, and ‘mies/wim’.

The optional selectarel specifies the method to be called to extract the substrings from the receiving
string. The default selector I$_substring_(ii)" . To retrieve mutable substrings, the selector
"r_mutableSubstring_(ii)" could be used.

deferred VIUtab G
mutableSubstring (int, int) (start, len)
pre
start >= 0 && len >= -1;

Return holding the characters from the receivigfing] in the (clipped) range
(start ,len).

deferred Sting]

substring (int, int) (start, len)
pre

start >= 0 && len >= -1;

Return a constargiring_] holding the characters from the receivig@ing_] in the (clipped) range
(start ,len).

deferred Ui g
uniquestring;

Return a unique version of the receiving string. Do not use this method to create unique strings; use

[UniqueString with my_string] instead. (This method only creates strings which think they
are unique; th@niqueSiring__| class ensures they actually are.)
id

244

Chapter 8. Unittom

downcase;
Undocumented.

id
upcase;

Undocumented.

double (value)
doubleValue;

Return the double value at the start of the string.

(int, boolean, int) (value, full_range, actual_length)
integerValue (int, int) (start, len)
defaultBase: int base = 10

allowSign: boolean signs = YES
allowCBases: boolean c¢_bases = YES
baseSeparator: byte base_separator = '’
decimalBase: boolean decimal_base = YES;

Convert the number contained in the receiving string from irel@x , running forlen bytes (which
-1 for unlimited length).

The value returned is a tuple (extracted value, occupied full range, actual length). If the actual length
is 0, the extracted number will be 0.

Thebase defaults to 10, but can be any number. If it is larger than 10, alpha characters encountered
have the value of 11 + the offset from the alpha character to the start of its range. Thus, ‘a’ is 10, ‘2’
is 35.

Iff signs , aleading '+’ or ‘-’ sign is accepted.

Iff c_bases , C-style base indicators may be used: a number starting with a ‘0’ denotes an octal
number; a number starting with ‘0x’ or ‘0X’ is a hexadecimal number.

Iff the base_separator is not 0, a number can be prefixed with a base indication followed by the
base separator to specify the base of the actual number to follow. The base is read using the a decimal
base, unlessdecimal_base is FALSE, in which case the base is read in the defaake . Thus,

“10_10, with * ' as a base separator, retutmesse if decimal_base is FALSE, and 10 if it was

TRUE

int
intValue;

Simple front-end fointegervalue (with default arguments).

int
unsignedintValue;

245

Chapter 8. Unittom

Simple front-end fointegervalue , similar tointvalue , but not allowing a negative value. For a
negative value entered (dueitbegerValue not doing overflow checking), 0 is returned.

boolean
isAlpha char c;

Return TRUE iff the character denotes a letter.

boolean
isDigit char c;

ReturnTRUEIff the character is a digit.

boolean
isLower char c;

ReturnTRUEIff the charactec is in lower-case.

boolean
isPunct char c;

ReturnTRUEIff the character is a punctuation character.

boolean
isSpace char c;

ReturnTRUEIff the character is a space character.

boolean
isUpper char c;

ReturnTRUEIff the charactec is in upper-case.

char
toLower char c;

Undocumented.

char
toTitle char c;

Undocumented.

char
toUpper char c;

Undocumented.

int
digitValue char c;

246

Chapter 8. Unittom

Undocumented.

int
alphaValue char c;

Undocumented.

id
stringByDecoding encoding_name;

Return a string by decoding it assuming it was encoded using the encoding naneadoly
ing_name . The default implementation simply returseif .

File tom/StringStream

class fom.$tringStream |

A is sort-of an enumerator orf&@ring |, with a[nputStream | interface.
inherits

State super$taie |, [npufStream_|

methods

instance (id)
with string;

Return a new stream on tlsging

instance tbm.8tringStream |

variables

string;
The[Btring_] we're streaming.

int next;
The index of the next byte to read.

methods

protected id
init S;

Designated initializer.

247

Chapter 8. Unittom

byte
read;

Undocumented.

int
read;
Undocumented.
int
readRange (int, int) (start, num)

into buffer;

Read the rangestart, num) from the string into théuffer

File tom/Thread

class tam.JThread |

The[Thread] class provides an abstraction to the multi-threading facilities provided by the underlying
operating system.

A new thread is started by thperforminThread with method provided by the instang@]. The
value returned by that method is object of the newly created thread.

Every thread has an id. The id of the current thread is available fronThifead] class ascur-

rent_id . The main thread (which every program has, even when running single-threaded) has id 0.
Due to the differences in target implementations, exiting the main thread, by invokirthtead |'s

exit method, is not guaranteed not to exit the program.

Multi-threading need not be available on all TOM targets. fumetioning method return&ALSE
on those targets on which multi-threading is not available. However, a TOM programmer can assume
multi-threading to always be available.

inherits

State supergtaie]

variables

static threads;

The currently existing threads.

local static public instance (id) current;

The current thread.

248

Chapter 8. Unittom

local static public int current_id;
The id of the current thread.

methods

boolean
functioning;

ReturnTRUEIff we can run multiple threads on this target.

Sen
threads;

Return the currently existing threads.

instance tom.Thread |

variables

public int thread_id,;
The TOM thread id of this thread.

methods
void
exit int rc
pre
self == current];

Exit the receiving thread, which must be the current thread.

protected id (self)
init int th_id;

Designated initializer.

File tom/Trie

class

The[rie] is a class providing the mechanism to store information in a triehan strings. It does
not by itself store any information, subclasses should be created to hold the informatidiel is

accompanied by its subcla8®jectTrie] which can store objects in a trie.
inherits

State super$taie |, Constants

249

Chapter 8. Unittom

instance tom.Tre |

variables

int start;
The offset to the first element imext , i.e. the element with numeric valisgart resides at
index O innext .

int beyond;

The value of the first element beyond the last elementi .

BNy next;

If start == beyond , this is the suffiXSiring_] which leads up to the value this node holds (if
any). Otherwisestart > beyond and this is gVutableObjectArray | pointing to the next
nodes, and which is to be indexed with offsetrt

methods

deferred boolean
isEmpty;

ReturnYESiff we can hold a value, i.e. if we do not yet hold a value.

protected id
createNode str
start int s
end int e
options int options;

Create the node for that part of the string starting as, and ending a¢. TheTRIE_LOOKUP_PREFIX
option is ignored. If this node already exists, it is returned.

When theoptions includeTRIE_FOLD_CASE thestr is inserted in lower case.

protected id
findNode str
start int s
end int e
options int options;

Find the node for that part of the stringy starting ak, and ending at. Iff a prefix match is desired,
the node returned is the longest prefix match.

protected void
pushSuffix int options;

Push our suffix one node down.

OutputStreant]

250

Chapter 8. Unittom

write S,
Undocumented.

deferred Outputstream |
writeValue OutputStream] S;

Undocumented.

class tom.ObjectTrie |
An DbjectTrie] is a[lrie_] which can hold an object.

inherits

State supergtrie |

instance tbm.DbjectTrie |

variables

public mutable value;
Our value.

methods

boolean
isEmpty;

Undocumented.

void
pushSuffix int options;

Move our value with the suffix.

By
at key
options int options;
Undocumented.
void
set Q] object
at key
options int options;

Undocumented.

OutputStreant]

251

writeValue S;
Undocumented.

Ay
at key;

Undocumented.
void
set QAI] object
at key;

Undocumented.

File tom/TypeDescription

class tom.[TypeDescription |

inherits

State supergiate]

variables

static descriptions;

A container holding the mapping frostruct trtd_selector_args
I fion 1 instance.

methods

instance (id) (result)
for pointer args;

Designated allocator, using a cache.

instance tom.TlypeDescription |

variables

public pointer types_description;
The internal runtime structure to the type description.

methods

boolean
equal id other;

Chapter 8. Unittom

to a[ypeDeserp—]

252

Chapter 8. Unittom

Undocumented.

protected id (self)
init pointer args;

Designated initializer.

int
length;

Return the number of elements.

int
component int n;

Describe the element at indexed 0. This returns one of ti?® PEDESC_*Constants].

OutputStrean]
writeFields S;

Describe the component types.

File tom/Unicoding

class fom.\Jnicoding |

Thenicoding | class object maintains information on tbeicode character coding.
inherits
Behaviour super@i |

variables
static is_digit;
Bitmap for digit predicate.

static is_letter;

Bitmap for letter predicate.

static is_lower;

Bitmap for lower predicate.

static is_punct;

Bitmap for punctuation predicate.

253

Chapter 8. Unittom

static is_space;

Bitmap for space predicate.

static is_upper;
Bitmap for upper predicate.

methods

protected ByteArray |
loadPredicateSet predicate
alternative selector alt_sel;

Load and return the predicate set for titedicate on Unicode characters. If it can not be located,
thealt_sel is used to extract part of the information needed fromIBASCITEncoding .

boolean
isAlpha char c;

Undocumented.

boolean
isDigit char c;

ReturnTRUEIff the character is a digit according to the encoding of the receiving string.

boolean
isLower char c;

Undocumented.

boolean
isPunct char c;

Undocumented.

boolean
isSpace char c;

Undocumented.

boolean
isUpper char c;

Undocumented.

char
toLower char c;

Undocumented.

254

Chapter 8. Unittom

char
toTitle char c;

Undocumented.

char
toUpper char c;

Undocumented.

int
digitValue char c;

Undocumented.

int
alphaValue char c;

Undocumented.

instance tbm.Unicoding |

inherits

Behaviour super@ll |

File tom/Unit

class

inherits

State supergtaie |

variables

static units;
All units known.

methods

instance (id)
named name;

Return thédnit] with thename, or nil if said unit does not currently exist.

protected void
fillUnits

255

Chapter 8. Unittom

pre
lunits;

Create thainits dictionary and fill it with the currently known units.

Mapped

units;

Return the collection of units, keyed on their name.

instance tom.Unif |

variables

public name;

The name of this unit.

classes;
The classes in this unit, keyed on their unqualified name.
methods
protected id (self)
initWithName n
classes (o

Designated initializer.

class (BiaE])
classNamed name;

Return the class with the given unqualifieaine, or nil if a class with that name does not exist in
this unit.

File tom/XL

class tom. XI'Tokens |

The tokens available frof&.

variables

const XLT_PAR_CLOSE = -9;

256

Chapter 8. Unittom

const XLT_PAR_OPEN = -8;

const XLT_DOUBLE = -7;

const XLT_FLOAT = -6;

const XLT_LONG = -5;

const XLT_INT = -4;

const XLT_SYMBOL = -3;

const XLT_EPSILON = -2;

const XLT_EOF = -1;

instance tbm X[Tokens |
class
inherits
State supergtate], KLCTokens]
variables

const XLS_SYMBOL = 0;

Different states of the lexer state machine. Basically, these states are the states of reading a
floating point number, with a prefix for an integer, and an escape for a non-numeric input.

const XLS_SIGN = 1;

const XLS_INT = 2;

257

Chapter 8. Unittom

const XLS _DOT = 3;

const XLS_FRAC = 4;

const XLS EXP_E = 5;

const XLS_EXP_SIGN = 6;

const XLS_EXP = 7,

instance tom.XL_|

variables

public stream,

The stream being lexed.

buffer;
The buffer used for building the text of the token.

public long int_value;

The most recent integer value retrieved.

public double float_value;

The most recent floating value retrieved.

public int current_line;

The current line.

public int token;

The current token.

int next_char;

The next character, i.e. the first character of the next token. TisTisEOFfor end of stream,
or XLT_EPSILONI if this should be considered invalid (and read before starting the next token).

methods

258

Chapter 8. Unittom

id
initWithStream S;

Designated initializer.

int
intValue;

Return thent_value as an int. Any loss of bits is not remarked.

MUEbteSTing]
matched;

Return the matched text.

int
nextToken;

Skip space and return the next token.

(pointer, int) (contents, length)
readBytes int expected_length
post
length == expected_length;

Skip whitespace, read a quoted string of bytegdting \\like\\ \"this\"") and return it.
The length should match the expected length. Anything unexpected results in the retudviof a
pointer.

File tom/archiving

class tom.SireamEncoder |

inherits

State supergncoder |

instance tom.SireamEncoder |

variables

OutputStream—] stream;
The stream to which we write.

methods

id

259

Chapter 8. Unittom

initWithStream S;
Undocumented.

protected
replacementObjectFor object;

Undocumented.

class tom.SfreamDecaoder |
inherits

State supergbecoder]

instance tbom.SireamDecaoder |

variables

[mputStreanT] stream;
The stream from which we read.

methods

id
initWithStream S;

Designated initializer.

class fom.BinaryStreamEncoder |

inherits

State supergireamEncoder_], BinaryEncoder

instance tom.BinaryStreamEncoder |

methods

id
initWithStream S;

Designated initializer.

void
finishEncodingRoot BT object;

Finish the graph.

260

Chapter 8. Unittom

protected void
writeByte byte b;

Undocumented.

protected void
writeBytes (int, int) (start, length)
from r

Undocumented.

protected void
writeBytes (pointer, int) (address, length);

Undocumented.

class tom.BinaryStreamDecoder |

inherits
State supergireamDecoder_], BinaryDecoder |, G

instance tbm.BinaryStreamDecoder |

methods

id
initWithStream S;

Designated initializer.

protected byte
readByte;

Undocumented.
protected void
readBytes int num

to pointer address;

Undocumented.

class tom.JTextSireamEncoder |
inherits

State supersStreamEncoder |

261

Chapter 8. Unittom

instance tom.TexiSireamEncaoder |

methods

void
startEncodingRoot BI] object;

Output the top of the graph.

void
finishEncodingRoot BIT] object;

Finish the graph.

class (Bfate])
startEncoding object;

Output the start of thebject

void
finishEncoding object;

Finish the output of thebject

protected int
identityForClass class (Btate]) a_class;

Identify this class on the outpstream , reporting its coding version.

void
encodeNilObject;

Output() , which is the notation for theil object.

void
encodeReference int v;

Undocumented.

void
encode boolean v;

Undocumented.

void
encode byte v;

Undocumented.

void
encode char v;

262

Chapter 8. Unittom

Undocumented.

void
encode int v;

Undocumented.

void
encode long v;

Undocumented.

void
encode float v;

Undocumented.

void
encode double v;

Undocumented.

void
encode selector v;

Undocumented.
void
encodeBytes (int, int) (start, length)
from r

Undocumented.

class tom.lMextSireamDecader |

This class is unimplemented.
inherits
State supergireamDecoder_], KLTokens

instance tom.TextSireamDecader |

variables

KO lexer;

The lexer actually doing the reading from aitieam .

263

Chapter 8. Unittom

int token;

The current token, cached so we know when we are starting up, in which case the token is
XLT_EPSILON.

methods

id
initWithStream s;

Designated initializer of our super.

id
initWithLexer KXo I

Designated initializer.

Ay
decode;

Undocumented.

byte
decode;

Undocumented.

boolean
decode;

Undocumented.

char
decode;

Undocumented.

int
decode;

Undocumented.

long
decode;

Undocumented.

float
decode;

Undocumented.

264

Chapter 8. Unittom

double
decode;

Undocumented.

(pointer, int) (contents, length)
decodeBytes;

Undocumented.

protected void
declareClass;

Undocumented.

protected int
nextToken;

Undocumented.

protected ANy
readReference;

Undocumented.

protected void
skipList;

Read tokens up to and including the first top-level close parenthesis.

protected void
termSymbol name;

Undocumented.

protected void
termToken int ft;

Undocumented.

File tom/behaviours

class fom.Comparable |

inherits

Behaviour supergll]

265

Chapter 8. Unittom

instance tbm.Gomparable |

inherits
Behaviour super@l |

methods

deferred int
compare id other
pre
other != nil;

Return O if theother is considered equal by the receiving object. 1 if the receiver considers himself
larger, and -1 when smaller.

void
set_index int index
in_heap h;

Functionality used b¥eag to keep track of the index of its elements. Instancepl@pElement |
actually remember thiedex . The default implementation just ignores it.
int

index_in_heap heap;

Return the index of this element in theap . Instances can do this O(1) instead of

the O(n) ofComparable]. On the other handComparable | can reside in any number Bigag, and it
is only removal other than through root extraction which has become slower.

class tom.ICaonfainer |

A container is an object which gets to mark its elements after normal marking has been done. This
is very usable for unique string tables, DO proxies, etc; actually: all cases where an object having
become garbage implying it should be removed from its container, and the container itself is not
allowed to reference the object in a normal way (since then it would never become garbage).

In short, a the combo of garbage collector and container implements weak referencing.

instance tbom.Confainer |

methods

deferred void
gc_container_mark_elements;

The container mark method.

boolean
isContainer;

266

Chapter 8. Unittom

ReturnTRUEIff the receiving object is a container.

void
setlsContainer boolean container_p;

Set this object to be a container, or not, dependinganitainer_p

void
setStackNotify boolean notify_p;

State that this container wants to be notified when it is conservatively pinpointed.

boolean
wantsStackNotify;

Does this container receive stack notifications?

void
gc_stack_notify;

Be notified of a reference from the stack, as requesidgtackNotify . Default implementation
does nothing.

class fom.Copying |

The[Copying | class defines an interface to copying objects.

inherits fromBtate] since class objects should not be copyable. Inheriting
ensures that th€opying | instance methods can not be inherited by class objects.

inherits

State supergtaie |

instance tbm.gopying |

methods

id

copy;
Return a shallow copy of the receiving object.
id

deepCopy;
Return a deep copy of the receiving object.
id

deepen int level
mutably: boolean mutable_p = NO;

267

Chapter 8. Unittom

Intended to be called on a recently acquired copy of an olijeepen mutable: deepens the copy.
Iff the optionalmutable_p is TRUE the deepened copies will also be mutable. The default imple-
mentation does nothing.

Thelevel should be less than 0 for an infinite deeplength == is a nop; ifflength > 0
every element of the copy is copied and deepened laith - 1

The value returned iself
id
initCopy;
Initialize the receiver just after it has been created as the resultapfya The default implementation
does nothing but returself
id
initAsCopyOf BI] other;

Initialize the receiver just after it has been created as the resultmaft@bleCopy of the other
object. The default implementation does nothing but retursétig .

By
mutableCopy;

Return a mutable (shallow) copy of the receiving object. For objects which do not discern between
mutable and immutable variants, the default implementation refsetiscopy]

Mutable copying asks the receiving object forrtstableCopyClass . If this class igsa , self is

sent acopy . Otherwise, an instance of the class is allocated and senitasCopyOf

class (Bfate])
mutableCopyClass;

Return the class of the object resulting from a mutable copy of this object. The default implementation
simply returndsa .

class tom . Enumerable |
inherits

State supergiate |
methods

instance (id)
withEnumerable Fnumerable | other;

Invokeself ’'s withEnumerator with anenumerator from theother .

instance (id)
withEnumerator Enumerator1 e;

268

Chapter 8. Unittom

Return a newly allocated instance of the receiving class, filled with the elements fr@@ndinera-]
C————fore .

instance tom.Hnumerable |

methods

deferred protected id
initWithEnumerator Enumerafor| e;

Initialize with the elements from tHEnumerator 4

deferred Enimerator 1
enumerator;

Return arEnumerafor_| on the receiving object.

class tom . Enumerafor |

instance tom.Hnumerafor |

methods

deferred (boolean, AiLY)
next;

Return a tuple containing the next object, preceded by a boolean value indicating whether the end of
the enumerable has been reached; if the boole@RUE the end has not yet been reached.

(boolean, byte)
next;

Default implementations for direct value retrieving enumerators.

(boolean, char)
next;

Undocumented.

(boolean, int)
next;

Undocumented.

(boolean, long)
next;

Undocumented.

269

Chapter 8. Unittom

(boolean, float)
next;

Undocumented.

(boolean, double)
next;

Undocumented.

(boolean, pointer)
next;

Undocumented.

class tom.NlapEnumerator |

inherits

State supergnumerafor |

instance tom.MapEnumerator |

methods

deferred (boolean, ATy, B0V)
next;

MapEnumerator allows iteration over both keys and values.

File tom/coding

class fom.[DbjectCoder |

ObjectCoder is a workaround for circular hierarchy - it is only a placeholder for methods called from
State (Coding)

inherits

State supergonditions |, Consfants_|
methods

void

encodeObject obj
usingCoder coder;

Undocumented.

270

Chapter 8. Unittom

void
initObject obj
usingCoder coder;

Undocumented.

instance tbm.ObjectCoder |

class fom.$tate (Coding)

This extension defines the functionality for encoding and decoding objects. To be able to en-
code an object, it must at least properly implemaniodeUsingCoder . Similarly, to be decodable,
it must implementnitwithCoder

The unit of archiving is a class, not an extension. This means that if an extension adds state information
which needs to be archived (or encoded ontocaPortCoder), the extension must re-implement
the coding methods.

variables

public mutable boolean encode_simply;

Classes that want to be encoded in the obvious way, by writing the values of their variables, set
this to TRUE.

methods
int
version;
Return the current version of the clads . This is the version that will be written when coding
instances of this class or a subclass thereof. The default version is 0.

A version should only be returnedsélf is identical to the class containing the method definition, i.e.
the method is not inherited. Otherwise, the two are unequal, and the version of a subclass is requested
that does not implement this method, and hence should return version 0.

boolean
never-encode-simply-p;

ReturnYES if encode_simply of all classes involved in the receiving object will always return
FALSE. Coding is sped up tremendously in that case. The defaudiito not speed up and allow for
passive encoding.

boolean
persistent-coding-p;

ReturnYES

271

Chapter 8. Unittom

instance tpm.8tate (Coding)

methods

class (BiaE])
classForCoder coder;

Return the class to be put in the coded stream as the class of this object. The default implementation
simply returnssa , which is the receiving object’s class.

void
encodeUsingCoder coder;

Encode the receiving object to the targetier . Every object should first invoke this method of all
its direct superclasses before encoding its instance variables, but dakBifenCodedFor for the
class implementing the method retusLSE. For classes that sehcode_simply to TRUE, this
method will use introspection to encode the class variables.

boolean
never-encode-simply-p;

ReturnYES if encode_simply of all classes involved in the receiving object will always return
FALSE. Coding is sped up tremendously in that case.

boolean
persistent-coding-p;

ReturnNQ
(self)
replacementForStreamCoder coder;

Return the object to be encoded on BiEamEncoder coder (i.e. archived or wired) instead of the
receiving object. The default implementation simply retusel§ .

void
initWithCoder coder;

Initialize the receiving object from theoder . After verifying that this method implementation has

not yet been invoked (usingasBeenCodedFor), this method should invoke the implementation of

this method by the superclasses, followed the fields that were encoded by this class. Decoding must
be done in the same order as encoding. Default implementati@iag# | will use introspection to

init the objects that requested it by settismgode_simply on their class to TRUE.

Note that this method returnveid . An object can change the actual object returned from decoding
by implementingawakeAfterUsingCoder

id (self)
awakeAfterUsingCoder coder;

272

Chapter 8. Unittom

Return the object to be the object retrieved from decoding instead of the receiving object. The default
implementation returnself .

Objects can use this method to return their administered counterpaf@nlifgeString | objects do.

Note that if an object is referenced during its decoding (i.e. object A is referenced by an object B
which is decoded because B is (indirectly) referenced by A), it must not return a different object from
awakeAfterUsingCoder . If it does, acoding-condition is raised.

class

inherits
State super$State], Condifions
methods
int
version;

The version of the coding scheme used. The current version is 0.

instance tom.Caoder |

methods
void
willCodeVariable name

forObject BT] object
inExtension X;

Notify the coder object about the variable being coded. This allows primitive form of state versioning
control. Note that there are no guarantees that every class will send this notification while encoding
itself.

void
willCodeExtension Extension 1 X
forObject BT] object;

Notify the coder of the extension being coded. There are no guarantees that every class will send this
notification.

void
doneCodingExtension X;

Notify the coder that the coding of the extension x is finished.

273

Chapter 8. Unittom

class tom.BinaryCoder |

TheBinaryCoder_| classeginaryEncoder | andBinaryDecoder | can archive dearchive a graph of
objects in a binary form onto/from a stream. The format is rather simple: Every item stored is preceded
by a tag byte indicating what the next item is. There are a few secondary tags to introduce classes, etc.

Every instance or class written is internally numbered in the order the objects are written. References
to these objects are encoded in the number of bytes necessary for the number of currently known
objects. The secondary tagsand4 switch to 2 and 4 byte reference encoding, respectively.

Thenil objectis denoted by thetag.

Selectors are encoded as a &gdpllowed by the assigned selector number (which isnan, starting
at 1) and the correspondif®glector] object. Selectors already encoded are denoted by s &gl
theint selector number. The invalid selector (the default valusetdctor typed variables, also
available agRuntime nullSelector]) is identified by the tag followed by O as the selector
number.

inherits

State supergoder]

instance tbm.BinaryCoder |

variables

int reference_size;

The number of bytes issued for a reference. This starts with 1 (a byte), and can become 2 (a char)
or 4 (an int).

methods

id
init;

Undocumented.

class tom.Encoder]
inherits

State supergoder]

instance tom.Hncoder |

variables

274

Chapter 8. Unittom

tmp_objects_done;

Keyed on the objects already encoded, the value is the identifier (whicHngamber |) used
for this object. This dict only contains temporary objects, i.e. objects that can be forgotten about
after eaclencodeRoot .

perm_objects_done;

Similar, the non-temporary objects. This includes class object§ardior]| objects.

objects_skipped,;

The set of conditional objects that were skipped.

coded_classes;

The classes which, for the current object, have already done their part in the coding.

int last_object_id;
The most recently issued object identifier.

methods

void
encodeRoot object;

The main entrfEncoder | method: encode thebject and the whole object graph implied by it. This
method is not reentrant.

id
init;

Designated initializer.

boolean
hasBeenCodedFor class (Bfate]) the_class;

ReturnNOif the object currently being encoded on this coder has not yet been encoded fidiss
ReturnYESotherwise. While coding an object, only the first invocation for a cettainclass ~ will
returnYES subsequent invocations will retuNQ

void
encode object;

Encode thebject , unconditionally.

void
encodeConditionally object;

275

Chapter 8. Unittom

Encode theobject , but only if it already is part of the output graph. If this is not the cade, is
encoded, and if later on in the coding process the object previously encoded as nil is encountered
(unconditionally), grogram-condition will be raised to flag the inconsistency.

deferred void
encode boolean v;

Encode thévooleanv .

deferred void
encode byte v;

Encode théoyte v .

deferred void
encode char v;

Encode thehar v .

deferred void
encode int v;

Encode thént v

deferred void
encode long v;

Encode thdong v .

deferred void
encode float v;

Encode thedloat v

deferred void
encode double v;

Encode thelouble v .

deferred void
encode selector v;

Encode theselector V.

deferred void
encodeBytes (int, int) (start, length)
from ByfeAmay | r
pre
start >= 0 && length >= -1;

276

Chapter 8. Unittom

Encode the bytes in the ranggart, length) from the array .

deferred void
encodeBytes (pointer, int) (address, length);

Encode thdéength bytes of which the first one resides at tiiress .

deferred protected
replacementObjectFor object;

Return the object to be encoded to this coder instead aflifeet . This method is implemented by
subclasses to retrieve the actual object fromotlject itself, for instance by asking foritplace-
mentForStreamCoder or replacementForPortCoder

deferred protected void
encodeNilObject;

Encode thenil reference.

deferred protected void
encodeReference int v;

Encode a reference to the object knowrvas

protected int
identityFor BT] object;

Return the identity to be used for the non-clalsigct . This returns the next value Bit_object_id

protected int
identityForClass class (Btate]) a_class;

Return the identity to be used for the class obgectass . This returns the next value it_object_id

class (BiaE])
startEncoding object;

Undocumented.

protected void
finishEncoding BI] object;

Invoked when thebject has been encoded. Default does nothing.

protected void
startEncodingRoot BI] object;

Invoked when coding starts with the ramidiect . Default does nothing.

protected void
finishEncodingRoot BIT] object;

277

Chapter 8. Unittom

Invoked when coding the roobject has finished. Default does nothing.

class fom.BinaryEncoder |

inherits
State superginaryCoder_], Encoder

instance tbm.BinaryEncoder |

variables

selectors;

The selector dictionary, frofBelector] to [nfNumber_].

methods

id
init;

Designated initializer.

class (BraEe])
startEncoding object;

Undocumented.

protected void
finishEncoding BT] object;

Invoked when thebject has been encoded. Emit a close paren.

protected void
updateReferenceSize;

Undocumented.

protected int
identityFor B] object;

Undocumented.

protected int
identityForClass class (Btate]) a_class;

Identify this class on the outpstream |, reporting its coding version.

protected void
encodeNilObject;

278

Chapter 8. Unittom

Undocumented.

protected void
encodeReference int v;

Undocumented.

void
encode boolean v;

Undocumented.

void
encode byte v;

Undocumented.

void
encode char v;

Undocumented.

void
encode int v;

Undocumented.

void
encode long v;

Undocumented.

void
encode float v;

Undocumented.

void
encode double v;

Undocumented.

void
encode selector v;

Undocumented.

void
encodeBytes (pointer, int) (address, length);

Undocumented.

279

Chapter 8. Unittom

void
encodeBytes (int, int) (start, length)
from r
Undocumented.

protected void

writeReference int r
pre

reference_size == 1 || reference_size == 2 || reference_size == 4;
Undocumented.

deferred protected void
writeByte byte b;

Undocumented.
deferred protected void
writeBytes (int, int) (start, length)
from r

Undocumented.

deferred protected void
writeBytes (pointer, int) (address, length);

Undocumented.

protected void
writeChar char c;

Undocumented.

protected void
writelnt int i;

Undocumented.

protected void
writeLong long I;

Undocumented.

class tom.IDecoder]

TheDecoder] class defines the interface to all decoder classes, be it binary or textual, stream or port
base.

inherits

280

Chapter 8. Unittom

State supergCoder]

instance tom.Decaoder |

variables

tmp_objects_done;

Objects, indexed on their identity, as retrieved from this coder.

MUtablelntDictionary perm_objects_done;

objects_referenced;

The identity of the objects that have been referenced while being decoded.

MutableEdgDictionary] class_versions;
Mapping from a class to the decoding version of that class.

coded_classes;
The classes which, for the current object, have already done their part in the coding.
methods
id
init;
Designated initializer.

By
decodeRoot;

This is the entry point for the user of this decoder. The user inveéesieRoot to retrieve an object,
plus its underlying graph, from this decoder. The object is returned.

boolean
hasBeenCodedFor class (Bm@E]) the_class;

ReturnNOif the object currently being decoded on this coder has not yet been decodwes fiduiss
ReturnYESotherwise. While coding an object, only the first invocation for a cettainclass ~ will
returnYES subsequent invocations will retuNQ
int

versionOfClass class (Bfate]) cls

pre
class_versions|cls] != nil;

281

Chapter 8. Unittom

Return the version of the clasks as encountered by this coder. The version can only be retrieved of
classes already encountered curing the decoding process.

deferred YL
decode;

Retrieve an object from this decoder and return it.

deferred boolean
decode;

Undocumented.

deferred byte
decode;

Undocumented.

deferred char
decode;

Undocumented.

deferred int
decode;

Undocumented.

deferred long
decode;

Undocumented.

deferred float
decode;

Undocumented.

deferred double
decode;

Undocumented.

deferred selector
decode;

Undocumented.

deferred (pointer, int)
decodeBytes;

282

Chapter 8. Unittom

Decode a sequence of bytes from the coder to newly allocated memory space. Return the address and
the length.

deferred void
decodeBytes int num
to pointer address;

Decode thenum bytes from the coder to thedress .
protected BNy
decodeObject class (Btate]) cls
as int ref;

Undocumented.

protected void
finishDecoding Bl o;

Invoked bydecodeObject as , after having invokedhitwithCoder , but beforeawakeAfterUs-
ingCoder . The default implementation does nothing.

protected ANy
reference int i;

Return the object referenced as the number

class fom.BinaryDecoder |

TheBnaryDecoder | is an abstract decoding class which can decode binary encoded objects. It serves
as the decoding engine for tB&aryStreamDecoder | andtoo.PortDecoder

inherits

State superginaryCoder_|, Decoder], @

instance tbom.BinaryDecoder |

variables

selectors;
The selectors encountered so far, indexed on their identity.

methods

id
init;

Designated initializer.

By

283

decode;

Decode and return an object.

By

decode byte b;

Decode and return an object, announced by thétag

boolean
decode;

Undocumented.

byte
decode;

Undocumented.

char
decode;

Undocumented.

int
decode;

Undocumented.

long
decode;

Undocumented.

float
decode;

Undocumented.

double
decode;

Undocumented.

selector (result)
decode;

Undocumented.

(pointer, int)
decodeBytes;

Chapter 8. Unittom

284

Chapter 8. Unittom

Undocumented.

void
decodeBytes int length
to pointer address;

Undocumented.

protected void
finishDecoding BI] o;

Invoked when the objeat has been decoded. Read a close paren.

protected byte
nextPrimary;

Return the next primary tag byte, handling secondary tags such as reference size changes and class
declarations.

If an unknown class is encountereduaknown-class-condition is signaled. A handler may
return a replacement class to be used instead. Failure to do so will later on restiltrizceaiver
condition or a failed precondition.

protected byte
nextPrimary byte expected;

Return the next primary tag byte, which must maggpected . If it doesn't, aprogram-condition
is raised.

protected int
readReference
pre
reference_size == 1 || reference_size == 2 || reference_size == 4;

Read an object reference from this decoder. Depending omrfédrence_size thisread 1, 2, or 4
bytes.

protected ANy
readReference;

Read an object reference from this decoder and return the object referenced. This catieg-a
condition in case not a proper reference is encountered, or if the referenced object is unknown.

deferred protected byte
readByte;

Return the next singleyte .

deferred protected void
readBytes int num

285

Chapter 8. Unittom

to pointer address;
Undocumented.

protected char
readChar;

Return the next two bytes ashar .

protected int
readint;

Return the next four bytes as aun .

protected long
readLong;

Return the next 8 bytes asang .

File tom/collections

class tom.[Caollecfion |

inherits

State super$taie |, Conditions |, Copying |, Enumerable]

instance tom.Collecfion |

methods

boolean
dump_simple_p;

ReturnYES

void
do Biock] block;

Evaluate theblock for each object element in thfSollection _]. Subclasses can provide a faster
implementation.

boolean
equal id other;

Two collections consider themselves equal if they are the same object or when their elements are
equal.

286

Chapter 8. Unittom

void
freeze;

Make the receiving collection immutable. This is irreversible. It is a no-op for immutable collections.

Coliection—
frozen;

Returnself if this is a non-mutabl&allection 1. Otherwise, return a non-mutable collection with
the same contents.

BTy
member AT object;

Return the element contained in this collection, whiclkdsal to theobject . The default imple-
mentation byCollection] visits the elements using an enumerator.

{2y
memq EI] object;

Like member, but the element is identified on reference equality.

deferred int
length;

Return the number of elements in thialeciion 1.

void
makeElementsPerform [Ovocation] invocation;

Fire theinvocation at the elements contained in the receiving collection.

void
makeElementsPerform selector message;

Send the argumentlesgessage to the elements contained in the receiving collection.
void
makeElementsPerform selector message
with REI] argument;

Send themessage with the objectargument to the elements contained in the receiving collection.

boolean
mutable;

A Callecfion1is not mutable.

void
passElementsTo inv;

287

Chapter 8. Unittom

Fire the invocation repeatedly, each time with the next object from the collection completing the
invocation.

OupuSiream
write s,

Undocumented.

class tom.MutableCaollecfion |

inherits

State supergCollection]

instance tbm.MufableCaollecfion |

methods

deferred void
add EIM] object;

Undocumented.

void
addElementsFrom other;

Undocumented.
void

addElementsFromEnumerator e;
Undocumented.

deferred void
empty;

Remove all elements from the receiving collection.

deferred void
freeze;

Forcefreeze to be undefined since each particular subclass must itself implement it.

id (self)
initWithEnumerator Fnumerator | €;

Initialize by feedingself the elements from thenumerator

boolean
mutable;

288

Chapter 8. Unittom

A is mutable.

class fom.Keyed |

A Keyed]|Collecfion | stores elements on a key.
inherits

State supergCallection]

instance tbm.Keyed |

methods
deferred B0y
at AT] key
pre
key = nil;

Undocumented.

deferred Enimerator]
keyEnumerator;

Return an enumerator on the keys of this mapped collection.

Ay
member BI] object;

Member for a Keyed collection can be implemented efficiently.

2y
memq AI] object;

Like member, but the element is identified on reference equality. This is a less-efficient abstract im-
plementation.

class tom.MutableKeyed |

inherits
State supergeyed|, MutableCollection

instance tbm.MutableKeyed |

methods

deferred void
add A object;

289

Chapter 8. Unittom

Add theobject

deferred void
remove RI] object;

Remove thebject

void
removeElementsFrom [Collection] C;

Remove all the objects contained in the colleciton

void
removeElementsFromEnumerator Enumeraior 1 €;

Undocumented.

void
keepElementsFrom C;

Remove all the objects not contained in the collectiphe., change the receiving collection into the
result of intersectingelf andc.

Keyed collections that can not handle losing elements while being enumerated must reimplement this.
There is no metho#teepElementsFromEnumerator because set intersection is not meaningful
with an arbitrary enumerator.

moexenT
allKeys;

All the keys in a convenient format.

class tom.Mapped |

A Mapped [Collection] is aKeyed] collection which stores (key, value) associations.

inherits

State supergeyed|

instance tom.Mapped |

methods

void
doKeys block;

Evaluate théblock for each key. Subclasses can provide a faster implementation.

deferred
valueEnumerator;

290

Chapter 8. Unittom

Return on the values of thiffapped collection.

boolean
equal id other;

Check for equality, checking not only the values, but also the keys.

deferred Entumerafor 1
keyEnumerator;

Return arEnumerator_] on the keys of thi§fapped collection.

class fom.NMutableMapped |

inherits
State supergviapped,
variables

const MAPPED_KEEP = 0;

Directives to guideaddPairsFrom

const MAPPED ERROR = 1;

const MAPPED_CLOBBER = 2;

instance tom.MutableMapped |

methods

void
add A value;

Add a new pair, using thealue as the value and the key.

deferred void
set MBI value
at A key
pre
key = nil && value != nil;

Undocumented.

void
addPairsFrom m

201

Chapter 8. Unittom

onContention: int action = MAPPED_KEEP;

Add pairs from anothdWapped collection. The optionadnContention ~ parameter specifies whether
or not pairs which have contending keys should keep the value curres#if in overwrite (clobber)
the value currently iself with the value inm or raise aype-condition Condition_____].

allValues;

Return all values in aldexed 1 format.

class tom.Drdered |

An Drdered {Jollecfion | maintains its elements in a specific order, though the time complexity or
retrieving the nth object not necessarily independent of n.

inherits

State supergCollecfion]

instance tom.Qrdered |

methods

(int, int)
adjustRange (int, int) (start, len);

Adjust the rangedfart , len) to fit the length of the receivinfndexed] collection.
By
at int index

pre
index >= 0 && index < [self length];

Return the element atdex . If the receiving collection stores unboxed values, such as integers, the
value returned is the element boxed. Returns nil on index overflow (precondition should whine about
it, though - nil may only be returned if [self length] is bugged).

byte
at int index;

Return the byte value of the elementiratex . If the receiving collection stores objects, thge-
Value of the element retrieved is actually returned.

char
at int index;

The following all follow thebasic typeat indexstanza.

int

292

Chapter 8. Unittom

at int index;
Undocumented.

long
at int index;

Undocumented.

float
at int index;

Undocumented.

double
at int index;

Undocumented.

int
indexOf @I element;

Return the index of the firglement , or -1 if it could not be found.

int
indexOfldentical B element;

Return the index of the first identicalement , or -1 if it could not be found.

class tom.MutfableOrdered |

inherits

State supergrdered |, MutableCollection]

instance tom.MufableOrdered |

methods
deferred void
set [AI] object

at int index;

Store theobject atindex in the receiving collection.

deferred void
swap (int, int) (i, j);

Swap the elements at the indideand;j .

293

Chapter 8. Unittom

void
reverse (int, int) (start, len);

Reverse the elements in the range startingiaat , with lengthlen .

void
reverse;

Reverse the entire collection.

deferred void
removeElementAt int index;

Remove the element atdex , decreasing by 1 the indices of the elements further in the collection.

void
removeElement BII] element;

Remove the first occurence ebment .

void
removeldenticalElement B element;

Remove the first occurence of the identieiment .

class taom.lhdexed]

An [ndexed Cjollection] maintains an association between integer indices and the objects it con-
tains, with the promise that retrieving an object through the index is O(1) in time complexity.

inherits

State supergrdered |

instance tbm.hdexed |

methods

void
do Biock] block;

Evaluate thenlock for each object element in thisdexed .

dynamic
elements;

Extract the elements from the receiving collection, as indicated by the return type. The number of
elements in the collection must match the number of expected elements.

dynamic

294

Chapter 8. Unittom

elements (int, int) (start, num);
Like elements , but extract only theum elements starting at indestart

Enmrmerator
enumerator;

Return arEnumerafor 1 on thislndexed 1.

boolean
equal id other;

A faster implementation than the one inherited friGbilection .

int
indexOf @I element;

Return the index of the firgiement , or -1 if it could not be found.

int
indexOfldentical B element;

Return the index of the first identicalement , or -1 if it could not be found.

void
makeElementsPerform inv;

A faster implementation than the one inherited friGoilection |, without using afEnumerator_|.

void
makeElementsPerform selector message;

Likewise.
void
makeElementsPerform selector message
with BI] argument;

Likewise.

void
passElementsTo inv;

Likewise.

class tom.Mufablelndexed |
inherits
State supergndexed |, MutableOrdered

295

Chapter 8. Unittom

instance tbm.MufableIndexed |

class tom.lhdexedEnumeratar |

The[ndexedEnumerator] enumerates arfjpdexed | collection, returning the elements boxed.

inherits
State super$gtate |, Enumerafor |
methods

instance (id)
with indexed;

Undocumented.

instance tom.lhdexedEnumerafor |

variables

int next;

The index of the next element to be returned.

int num;
The index one beyond the last element to be returned.
indexed;

The actual indexed collection.

methods
id (self)
init a
start: int start = 0
length int length;
Designated initializer.

(boolean, Bny)
next;

Undocumented.

(boolean, byte)
next;

296

Chapter 8. Unittom

All thesenext methods are not really necessary, as they are provided behaviour.
However, binding them here directly greatly enhances speed and reduces memaory requirements for
non-object indexeds, which now also do not need their own enumerator to obtain speed.

(boolean, char)
next;

Undocumented.

(boolean, int)
next;

Undocumented.

(boolean, long)
next;

Undocumented.

(boolean, float)
next;

Undocumented.

(boolean, double)
next;

Undocumented.

File tom/config

class tom.Constants (tonfig)

variables

const TOM_RESOURCES = "/usr/local/lib/tom/charmaps/";

const TOM_PREFIX = "/ust/local/";

instance tobm.{Qonstants (¢onfig)

297

Chapter 8. Unittom

File tom/holes

class

implements afutputSiream] that is a black hole. It consumes all data that is written to it, and
has no value for printing.

inherits
State super$tate], DutputSiream

instance tbm.Sink |

methods

void
close;

Undocumented.

void
write byte b;

Undocumented.

int
write byte b;
Undocumented.
int
writeRange (int, int) (start, length)
from buffer;

Undocumented.

id
print boolean b;

Undocumented.

id
print byte b;

Undocumented.

id
print char c;

Undocumented.

298

Chapter 8. Unittom

id
print int i

Undocumented.

id
print long I;

Undocumented.

id
print float f;

Undocumented.

id
print double d;

Undocumented.

id
print pointer addr;

Undocumented.

id
print dynamic Xx;

Undocumented.

File tom/numbers

class tom.ByteNumber |

inherits

State supergiumber

instance tbm.ByteNumber |

variables

byte value;

methods

299

Chapter 8. Unittom

byte
byteValue;

Undocumented.

char
charValue;

Undocumented.

double
doubleValue;

Undocumented.

float
floatValue;

Undocumented.

int
intValue;

Undocumented.

long
longValue;

Undocumented.

int
compare [NUMbeEn n;

Undocumented.

int
compare byte v;

Undocumented.

int
compare char v;

Undocumented.

int
compare int v;

Undocumented.

int

300

Chapter 8. Unittom

compare long v;
Undocumented.

int
compare float v;

Undocumented.

int
compare double v;

Undocumented.

id
init byte value;

Undocumented.

id
init char value;

Undocumented.

id
init int value;

Undocumented.

id
init long value;

Undocumented.

id
init float value;

Undocumented.

id
init double value;

Undocumented.

void
encodeUsingCoder coder;

Undocumented.

void
initWithCoder coder;

301

Undocumented.

CuputStrean]
write S,

Undocumented.

class tom.ICharNumber |

inherits

State superglumben

instance tom.CharNumber |

variables

char value;

methods

byte
byteValue;

Undocumented.

char
charValue;

Undocumented.

double
doubleValue;

Undocumented.

float
floatValue;

Undocumented.

int
intValue;

Undocumented.

long
longValue;

Chapter 8. Unittom

302

Chapter 8. Unittom

Undocumented.

int
compare n;

Undocumented.

int
compare byte v;

Undocumented.

int
compare char v;

Undocumented.

int
compare int v;

Undocumented.

int
compare long v;

Undocumented.

int
compare float v;

Undocumented.

int
compare double v;

Undocumented.

id
init byte value;

Undocumented.

id
init char value;

Undocumented.

id
init int value;

Undocumented.

303

Chapter 8. Unittom

id
init long value;

Undocumented.

id
init float value;

Undocumented.

id
init double value;

Undocumented.

void
encodeUsingCoder coder;

Undocumented.

void
initWithCoder coder;

Undocumented.

OutputStrearn—]
write DuipuiStream 1 S

Undocumented.

class tom.1aiNumber_]
inherits

State supergiumben

instance tom.InfNumber |

variables

int value;

methods

byte
byteValue;

Undocumented.

304

char
charValue;

Undocumented.

double
doubleValue;

Undocumented.

float
floatValue;

Undocumented.

int
intValue;

Undocumented.

long
longValue;

Undocumented.

int

compare n;

Undocumented.

int
compare byte v;

Undocumented.

int
compare char v;

Undocumented.

int
compare int v;

Undocumented.

int
compare long v;

Undocumented.

int

Chapter 8. Unittom

305

compare float v;
Undocumented.

int
compare double v;

Undocumented.

id
init byte value;

Undocumented.

id
init char value;

Undocumented.

id
init int value;

Undocumented.

id
init long value;

Undocumented.

id
init float value;

Undocumented.

id
init double value;

Undocumented.

void
encodeUsingCoder coder;

Undocumented.

void
initWithCoder coder;

Undocumented.

OutputStreant]
write S,

Chapter 8. Unittom

306

Chapter 8. Unittom

Undocumented.

class fom.llongNumber |

inherits

State superflumbeq

instance tbm.lLlongNumber |

variables

long value;

methods

byte
byteValue;

Undocumented.

char
charValue;

Undocumented.

double
doubleValue;

Undocumented.

float
floatValue;

Undocumented.

int
intValue;

Undocumented.

long
longValue;

Undocumented.

int
compare n;

307

Chapter 8. Unittom

Undocumented.

int
compare byte v;

Undocumented.

int
compare char v;

Undocumented.

int
compare int v;

Undocumented.

int
compare long v;

Undocumented.

int
compare float v;

Undocumented.

int
compare double v;

Undocumented.

id
init byte value;

Undocumented.

id
init char value;

Undocumented.

id
init int value;

Undocumented.

id
init long value;

Undocumented.

308

Chapter 8. Unittom

id
init float value;

Undocumented.

id
init double value;

Undocumented.

void
encodeUsingCoder coder;

Undocumented.

void
initWithCoder coder;

Undocumented.

OutputStreanm]
write Ouipuistream | S;

Undocumented.

class tom.FloatNumber |
inherits

State supergiumben

instance tom.HloafNumber |

variables

float value;

methods

byte
byteValue;

Undocumented.

char
charValue;

Undocumented.

309

Chapter 8. Unittom

double
doubleValue;

Undocumented.

float
floatValue;

Undocumented.

int
intValue;

Undocumented.

long
longValue;

Undocumented.

int
compare [NUMbeEn n;

Undocumented.

int
compare byte v;

Undocumented.

int
compare char v;

Undocumented.

int
compare int v;

Undocumented.

int
compare long v;

Undocumented.

int
compare float v;

Undocumented.

int

310

compare double v;
Undocumented.

id
init byte value;

Undocumented.

id
init char value;

Undocumented.

id
init int value;

Undocumented.

id
init long value;

Undocumented.

id
init float value;

Undocumented.

id
init double value;

Undocumented.

void
encodeUsingCoder

Undocumented.

void

coder;

initWithCoder coder;

Undocumented.

OutputStreant]

write S;

Undocumented.

Chapter 8. Unittom

311

Chapter 8. Unittom

class tam.IDoubleNumber |
inherits

State superglumbeq

instance tom.DoubleNumber |

variables

double value;

methods

byte
byteValue;

Undocumented.

char
charValue;

Undocumented.

double
doubleValue;

Undocumented.

float
floatValue;

Undocumented.

int
intValue;

Undocumented.

long
longValue;

Undocumented.

int
compare n;

Undocumented.

312

Chapter 8. Unittom

int
compare byte v;

Undocumented.

int
compare char v;

Undocumented.

int
compare int v;

Undocumented.

int
compare long v;

Undocumented.

int
compare float v;

Undocumented.

int
compare double v;

Undocumented.

id
init byte value;

Undocumented.

id
init char value;

Undocumented.

id
init int value;

Undocumented.

id
init long value;

Undocumented.

id

313

Chapter 8. Unittom

init float value;
Undocumented.

id
init double value;

Undocumented.

void
encodeUsingCoder coder;

Undocumented.

void
initWithCoder coder;

Undocumented.

OutputStrean]
write s,

Undocumented.

File tom/streams

class tom.Siream |
inherits

State super€Condifions]
Behaviour super@l |

instance tbm._8Sfream |

inherits

State supergCondifions]
Behaviour super@ |

methods

deferred void
close;

Undocumented.

314

Chapter 8. Unittom

class tom.lhputStream |

inherits
State supergtream]

instance tbm.|nputStream |

methods

id
flushinput;

Discard any unread input. The default implementation does nothing.

deferred byte
read,

Read a byte from the receiving stream. This raissigeam-eos condition upon end-of-stream.

deferred int
read;

Read a byte from the receiving stream. Return -1 for end-of-stream.

int
readBytes int num
into buffer;

Read at mostum bytes from the stream into thmuffer , starting to add bytes at its current length.
Return the number of bytes successfully read, which is 0 for end-of-stream.

deferred int
readRange (int, int) (start, num)
into buffer,

Read at mostumbytes from the stream into thffer , by writing in it from positionstart . Return
the number of bytes successfully read, which is 0 for end-of-stream.

MUtableBYEeStTing 1

readLine;

Read a ‘\n’ terminated sequence of bytes and return them (without the \n’ at the end). Return
upon end of file (if no characters have been collected).

MUtableBYeATTay 1

readLinelnto buf
truncate: boolean trunc = YES;

315

Chapter 8. Unittom

Read a ‘\n’ terminated sequence of bytes and return them (without the ‘\n’ at the éndl).iReturn
nil upon end of file (if no characters have been collected). If the optianalate is not NO, the
buffer is truncated before use.

class tom.QutputStream |

inherits

State super$tream

variables

local static print_buffer;

The buffer used byrint base:...

instance tbm.QutputStream |

methods

id
flushOutput;

Write out any unwritten (buffered) output. The default implementation does nothing.

id
nl;

Output a new line to the receiving stream. An interactive stream should override this to also flush its
output if it desires line based buffering.

id
print boolean b;

Undocumented.

id
print byte b;

Undocumented.

id
print char c;

Undocumented.

id
print int i

Undocumented.

316

Chapter 8. Unittom

id
print long |;

Undocumented.

id
print float f;

Undocumented.

id
print double d;

Undocumented.

id
print pointer addr;

Undocumented.

id
print |AIT] object;

Undocumented.

id
print dynamic Xx;

Sendprint toself for each element of the tuple

id
print int value
base: int base = 10
space: int space = 0
flush: int flush = -1
signed: int how_signed = -1
range: char digit 10 = char (a’);

Output thevalue to the receiving stream.
The optionabase dictates the base of the representation, which defaults to 10.

If the optionalspace is not 0, it is the number of positions the representation must at least occupy.

If space is not 0, the optionaflush dictates how the representation is to be flushed. A negative
value means left, O for center, and a positive value dictates a right shift. The absolute Vialske of
indicates the amount of whitespace which must be available at the other end.

The optionalsigned should be 0 for unsigned, or 1 for signed. If it is -1 (the default) the value is
assumed unsigned, unlesse has its default value, 10.

317

Chapter 8. Unittom

The optionaligit_10 sets the value to use for the decimal value 10 when ushaga exceeding
that value.

deferred void
write byte b;

Write the byteb, signaling a condition upon eof.

deferred int
write byte b;

Write the byteb and return the number of bytes actually written.

deferred int
writeBytes int num
from pointer address;

The lowest level multiple-byte writing method: Write thembytes fromaddress to the stream, and
return the number of bytes written.

int
writeRange (int, int) (start, length)
from buffer;

Undocumented.

int
writeBytes buffer;

Undocumented.

class fom.]hputOutputStream |

inherits
State supergnputStream |, DutputSiream

instance tbm.]fputOutputStream |

class tom.SeekableSiream |
inherits
State supergSiream], Consfants_]

instance tobm.8SeekableSiream |

methods

deferred long

318

Chapter 8. Unittom

position;
Return the current position.

deferred void
seek long offset
relative: int whence = STREAM_SEEK_SET;

Set the position. Any following operation will operate from the new position. The optional argu-
mentwhence defaults toSTREAM_SEEK_SETfor absolute positioning. Possible other values are
STREAM_SEEK_CURor positioning relative to the current position, a8ltREAM_SEEK_ENIDo work
relative to the end.

class tom.SfreamSiream |

inherits

State supersfream],
methods

instance (id)
with S;

Undocumented.

instance tom.SireamSiream |

variables

public stream;
The stream to which we output and/or from which we input.

methods

void
close;

Undocumented.

id
init S,

Undocumented.

class tom.Kidio |

inherits

Behaviour supergll]

319

Chapter 8. Unittom

variables
static public in;
The stream connected to descriptor 0, knowastdi in C.

static public out;

The stream connected to descriptor 1, €out

static public err;

The stream connected to descriptor 2, &€&err . Like out , this stream is buffered.
methods
void

close int descriptor;

Close thedescriptor . Raises a&tream-error on failure.

instance tbm.skdia]

inherits

Behaviour supergll]

File tom/unique-strings

class fom.\JniqueString |

inherits

State super{string |
variables

static strings;

TheContainer_] of all unique strings. The container mechanism will ensure only those strings
are kept that are still needed.

methods

void
load arguments;

Initialize thestrings Cohtamer 1.

instance (id)

320

Chapter 8. Unittom

with s,

Return thgdniqueString__] containing the same information as . This is the only method
to be used to create unique strings.

protected instance (id)
awake instance (id) us
equal selector cmp;

Find the stringus in thestrings , comparing them using the selectop. If the string is found, the
old string is returned. Otherwises is added to thatrings and it is returned.

instance tom.UniqueString |

variables

int hash;
The cached hash value of this string.

methods

boolean
equal other;

Tell theother to compare itself to thifniqueSiring__].
boolean
equalUniqueString other;

ReturnTRUE This is simple pointer comparison.

int
compare id other;

Override compare, to return fast upon equality.

class fom.JniqueByteSiring |

inherits
State supergIniqueSiring |, ByfeString

instance tbm.UniqueByteString |

methods

boolean
equal Btng_] other;

321

Chapter 8. Unittom

This definition is only here because we can not direct the implementation of this selector to the right

class.
boolean
equalUniqueString other;

The same is true for this one.

int
hash;

When called for the first time, hash the string, and remember the value. Every next time, return the
cached value. Obviously, this loses for strings with a zero hash value (which keep being hashed).
id

awakeAfterUsingCoder coder;

Iff a unique string like the receiving one already exists, return the already existing one. Otherwise,
add the receiving string to the known unique strings.

class tom.\UnigueCharString |

inherits

State supergIniqueSiring |, CharString |

instance tbm.UniqueCharString |

methods

boolean
equal other;

Redefinition since we can not redirect to the rigb@fueString__|) super.
boolean

equalUniqueString other;
Redefinition since we can not redirect to the rigb@fueString__|) super.
int

hash;

Cached hashing, just ligniqueByteString__|.

id
awakeAfterUsingCoder coder;

Iff a unique string like the receiving one already exists, return the already existing one. Otherwise,
add the receiving string to the known unique strings.

322

Chapter 9. Unit C

TheC unit interfaces TOM withibc andlibm .

File C/Math

TheMath] class wraps the standard mathematical functions present within libc.

class ClMath]

Return the length of the hypotenuse of a right triangle whose sides measndy in length.

methods

double
hypot (double, double) (x, y);

Undocumented.

double
lgamma double x;

Undocumented.

double
erf double x;

Undocumented.

double
erfc double x;

Undocumented.

double
jO double x;

Undocumented.

double
j1 double x;

Undocumented.

double
jn (int, double) (x, n);

Undocumented.

323

Chapter 9. UnitC

double
y0 double x;

Undocumented.

double
y1l double x;

Undocumented.

double
yn (int, double) (x, n);

Undocumented.

double
acos double x;

Return the arc cosine af x must not fall outside the range -1 to 1. The return value will be in radians.

double
asin double x;

Return the arc sine of. x must not fall outside the range -1 to 1. The return value will be in radians.

double
atan double x;

Return the arc tangent &f The return value will be in radians.

double
atan2 (double, double) (x, v);

Return the arc tangent gfx, using the signs of the arguments to determine the quadrant of the return
value. The return value will be in radians.

double
cos double x;

Return the cosine of. The return value will be in radians

double
sin double x;

Return the sine of. The return value will be in radians.

double
tan double x;

Return the tangent of. The return value will be in radians.

324

Chapter 9. UnitC

double
cosh double x;

Return the hyperbolic cosine ®f The return value will be in radians.

double
sinh double Xx;

Return the hyperbolic sine af The return value will be in radians.

double
tanh double x;

Return the hyperbolic tangent »f The return value will be in radians.

double
exp double x;

Return the result of computing

double
Idexp (double, int) (x, n);

Return the result of computing* 2”*n.

double
log double x;

Return the natural log of. x must be positive.

double
logl0 double x;

Return the log ok in base 10x must be positive.

double
pow (double, double) (x, V);

Return the value of raised to the powey, xy. If x is negativey must be an integer value.

double
sqrt double x;

Return the square root af

double
ceil double x;

Return the value of rounded up to the nearest integer.

double

325

Chapter 9. UnitC

fabs double x;
Return the absolute value »f

double
floor double x;

Return the value of rounded down to the nearest integer.

double
fmod (double, double) (x, y);

Return the remainder of dividingby y.

instance C.INath]

File C/Std

This class wraps functions from ‘stdio.h’, ‘stdlib.h’, and other ANSI C headers.

class Cl&id]

Immediately abort execution of the program, causing a core dump on some systems.

methods

void
abort;

Undocumented.

void
sleep int seconds;

Suspend execution f@econds seconds.

int (result)
system cmdline;

Executecmdline via the system() system call. All limitations of the underlying system() call apply.

int
abs int intval;

Compute the absolute value of the integpevral

326

Chapter 9. UnitC

instance CI$id]

327

Chapter 10. Unit too

Thetoo unit provides TOM with networking, event dispatching, and distributed objects.

File too/AutoLock

class tom.Conditions (AutoLock)

This extension provides deadlock-condition.

variables

static deadlock-condition;

instance tom.Qonditions (AutoLock)

class tom.[Thread (AutoLock)
Necessary glue withifihread] class.

instance tpm.Thread (AutoLock)

variables

public blockedBy;
The thread which has to release a lock so we can continue.

methods

boolean
iswWaitingFor t;

ReturnTRUEIf we are waiting for the argumefihireadt to finish. This includes implied (transitive)
waiting.

void
setBlockedBy t;

SetblockedBy . This is solely used internally by tif&ifoCock | class.

328

Chapter 10. Unitoo

class taoAufol ock]

Recursive lock with deadlock detection. If deadlock occurs, the faulty thread will be unjammed by
receivingdeadlock-condition

inherits
State supergRecursiveLock], [Conditions]
methods
void
load arguments;

Initialization method.

instance tbo Aufol ock |

variables

owner;
The thread holding the lockjl if none.

methods

id
init;

Designated initializer.

void
lock;

Obtain the lock, but if a deadlock is detectddadlock-condition will be raised.

void
unlock;

Unlock the lock.

File too/Connection

class too.Conneciion |
inherits
State super$gtate |, DescriptorReadDelegate |, Constants |
variables

329

Chapter 10. Unitoo

static all_connections;
All connection objects.
methods

instance (id)
alloc;

Store the new connection in thé connections

void
connection Cannection 1 connection
remoteProxyDead int identity
pre
all_connections[connection];

Pass this message to ttwnnection

instance tba.Qaonnecfion |

variables
public root;
The root object of this connection.

public port;

The Port serving this connection.

local_objects;

The set of local proxies, keyed on their local object.

local_proxies;

The set of local proxies, keyed on their identity.

MUtablelntDictionary] remote_proxies;

The set of remote proxies, keyed on their identity.

MutablentArray] unreported_deaths;

The set of remote proxy identities that are dead here and which need to be sent to the other side.

int last_proxy_ident;
The last number used as a local proxy identity.

methods

id (self)

330

Chapter 10. Unitoo

initWithPort p;
Designated initializer.

protected
local_proxies;

Other connections may inspect our proxies.
(object)

localObject int identity
post

object != nil;

Return the local object identified by thidentity to the other side.

Proxy]

localProxyFor BIT] object
pre

object != nil;

Return the local proxy to identify the locabject

By
remoteObject int identity;

Return the remote object identified by tidentity =~ by the other side.

void

localProxyRelease int identity
pre

llocal_proxies[identity];

Be informed that the local proxy with thdentity ~ has one less remote proxy to care for. If that
number reaches zero, the local proxy object is removed.

void
remoteProxyDead int identity;

By informed (by our remote proxy with thidentity) of the GC death of a remote proxy.

Note that this method is invoked during GC and that no new objects should be allocated.

class too.ServerConnecfion |
inherits

State supergConnection |

331

Chapter 10. Unitoo

instance tba.ServerConnecfion |

variables

redeclare port;
Ourport is only here for accepting connections.

methods

id (self)
initwithPort p;

Designated initializer.

void
set root @I T

Undocumented.
void
readEventOnDescriptor p;

Instantiate anothdtannecitedConnection 1.

class too.CaonnectedConnecfion |
inherits

State supergConnection |, DescriptorWriteDelegate , Conditions

instance tba.CaonnecfedCaonnecfion |

variables
redeclare port;

We are actually connected.

decoder;

Our decoder.

PoriEncoder 1 encoder;

Our encoder.

master;

If we're a slave connection (i.e. the working part for a published connection), this is the published
server connection.

332

boolean invalid;
Iff TRUE we've lost the connection.

methods

id (self)
initwithPort P

Initializer for a client connection.
id (self)
initWithPort p
for server;

Initializer for a slave connection, i.e. a slave to taever

protected void
initDetails;

Do part of the work for either initializer.

void
invalidate;

Undocumented.

port;

Undocumented.

By
localObject int identity;

Forward to themaster if we have one.

Broxyl
localProxyFor BI] object;

Forward to themaster if we have one.
void

localProxyRelease int identity
pre

Imaster -> ![master local_proxies][identity];

Forward to thenaster if we have one.

IONVOCANONKEeSUIT |

forward invocation;

connection.

Chapter 10. Unitoo

333

Chapter 10. Unitoo

Forward thenvocation to the other side.

void
readEventOnDescriptor p;
Undocumented.

File too/DescriptorDelegate

class foo.DescriptorDelegate |

DescriptorDelegate classes are used to define the logic for handling read and write evenf8eh file
scriptor__|s. Users should create new classes inheriting from elllBstriptorReadDelegate | or

DescriptorWriteDelegate , providing an implementation of eitheg¢adEventOnDescriptor
or writeEventOnDescriptor respectively, to implement their application logic.

instance tpo.DescriptorDelegate |

class foo.DescriptorReadDelegate |

inherits

State super{escriptorDelegate |

instance tpo.PescriptorReadDelegate |

methods

deferred void
readEventOnDescriptor d;

TheRunLoop] has determined that tHEEscripford | is readable.

class foo.DescriptorWriteDelegate |
inherits
State super{escriptorDelegate |

instance tpo.PescriptorWriteDelegate |

methods

deferred void
writeEventOnDescriptor d;

334

TheRunLoop] has determined that tHEEscriptord | is writable.

File too/DescriptorSet

class foo.DescriptorSet |

inherits
State super$iate |, G

instance tpo.DescriptorSet |

variables

pointer set;

The bitset of descriptors usable to select(2).

int cap;

One beyond the highest descriptor that can be put in the set.

int beyond_last;

One beyond the highest descriptor present in the set.

int num;

The number of descriptors present in the set.
descriptors;

The array oDescriptor __] objects.

delegates;
The array oDescriptorDelegate objects.

methods

void
dealloc;

Deallocate the memory occupied by tw .

id (self)
init;

Designated initializer.

Chapter 10. Unitoo

335

Chapter 10. Unitoo

void
remove descriptor;

Undocumented.

void
set delegate
at descriptor;

Undocumented.

(pointer, int)
vitals;

Return a pointer to the low-level descriptat , and the one beyond the highest value in that set.

void
readEvent int d;

Dispatch a read event on the file descriftpto the delegate at indekin the delegates.

void
writeEvent int d;

Dispatch a write event on the file descripthito the delegate at indekin the delegates.

File too/PortCoder

class tom.Encoder (PortCoder)

instance tom.Bncoder (PortCoder)

methods

boolean
encodeProxy [BI] p;

Encode &Proxy]. If this is for archiving purposes, this does nothing and ret@sSE (the default
implementation). Otherwise, in case of wiring, it actually performs the proxy encoding and returns
TRUE

class too.PortCader |
inherits

State super{naryCoder]

336

instance tba . HarfCader |

variables

public connection;

TheConnection | for which we operate.

CONMeCtedPort—] port;

Our buffered view of the socket in the direction we handle.

methods

id
initWithConnection ConnectedConnecton] C;

Designated initializer.

File too/PortDecoder

class too ParfDecoder |
inherits

State superginaryDecoder], PoriCoder

instance tba.HartDecaoder |

methods
id
initWithConnection ConnectedConnecton] C;
Undocumented.
By

decode byte b;

Handle proxy tags before super.

protected byte
readByte;

Undocumented.
protected void

readBytes int num
to pointer address;

Chapter 10. Unitoo

337

Chapter 10. Unitoo

Undocumented.

File too/PortEncoder

class too PorfEncoder |
inherits
State superginaryEncoder |, PortCoder

instance tba.FHartEncoder |

methods

id
initWithConnection ConnectedConnecton] C;

Designated initializer.

protected
replacementObjectFor object;

Return the object returned by askirggplacementForPortCoder to the argumentbject

boolean
encodeProxy p;

Encode the proxy and returnfRUE

void
flushOutput;

Forward to theport .

void
reportDeaths deaths;
Undocumented.

protected void
writeByte byte b;

Undocumented.

protected void
writeBytes (int, int) (start, length)
from r;

338

Chapter 10. Unitoo

Undocumented.

protected void
writeBytes (pointer, int) (address, length);

Undocumented.

File too/Proxy
class tom.State (Proxy)

This extension oftate | only provides thésProxy method, which allows one to discern between
proxy and non-proxy objects.

instance tobm.8tate (Proxy)

methods

boolean
isProxy;

Undocumented.

StaE
replacementForPortCoder coder;

Return the object to be encoded by twler instead of the receiving object. This method is re-
peatedly invoked until an object retursedf . The default implementation retrieves a proxy from the
coder ’s connection

class too.Froxy |

inherits
State supergiate |

instance tpbo.Rroxy |

variables

Connecfion 1 connection;
TheConnection] to which we belong.

int identity;

Our identity with ourconnection

339

Chapter 10. Unitoo

methods
id
initWithConnection Conneciion 1 ¢
identity int ident;
Undocumented.

proxy_connection;

Undocumented.

int
proxy_identity;

Undocumented.
replacementForPortCoder coder;

Returnself , since we know how to be sent over the wire.

void
encodeUsingCoder coder;

Have thecoder encode us as a proxy; otherwise fail (which is the case when archiving instead of
wiring).

class foo.llocalProxy |

inherits

State super$roxy |

instance tpo.ljocalProxy |

variables

public original;
The object for which we stand.
methods
id
initWithConnection Connection 1 ¢

identity int i
for [EIT] object;

340

Chapter 10. Unitoo

Designated initializer.

class foo.RemoteProxy |

inherits

State supergroxy |

instance tbo.RemoteProxy |

variables

redeclare Connectedconnection] connection;

Ourconnection is connected.

methods

boolean
isProxy;

Undocumented.

IONVOCANONKEeSHIT |

forwardSelector selector sel
arguments pointer args;

The low-level forwarding method. This method is invoked for forwarding a invocation completing
method and this is used by tP&oxy].

void
dealloc;

Inform our connection ~ from our death. This messages class, since messaging
objects fromdealloc methods is not allowed. We identify ourselves by olentity ~ since passing
around a dead object (which we are) is asking for trouble.

class foo.NlonProxy |

Instances of (subclasses are never proxies. They always send a copy over the wire.
inherits
State supergiate]

instance tpbo.NonProxy |

methods

id (self)

341

replacementForPortCoder C;

Returnself as we do not want to be proxied.

class tom.Nlumber (Proxy)

inherits
State supergionProxy]|

instance tom.Number (Proxy)

class fom.Jfvocation (Proxy)

inherits

State super$lonProxy |

instance tbm.lifvocation (Proxy)

class tom.lhvocationResult (Proxy)

inherits
State superg¥onProxy]

instance tbm.lfvocationResult (Rroxy)

class tom.Selector (Proxy)

inherits
State superg¥onProxy |

instance tobm.8elector (Proxy)

class tom.[Collection (Proxy)

inherits

State super$lonProxy |

instance tom.(ollection (Proxy)

class tom.NlutableCollection (FProxy)

inherits

Chapter 10. Unitoo

342

Chapter 10. Unitoo

State supergtaie |

instance tbm.MutableCollection (Rroxy)

methods

id
replacementForPortCoder C;
This is naughty: &ollection], through its inheritance returnsself when asked its

replacementForPortCoder . However, gviutableCollection | must be proxied for maintaining
the right semantics. Hence, we redirect the method to our direct (though repeated) suEEaiEs

File too/RunLoop

class too.RunLCoop |

inherits
State supergiaie]
variables

local static instance (id) current;
This thread’s run loop.

methods

instance (id)
current;

Return this thread'RunLoop], creating it if it does not yet exist.

instance tpbo.RunLoop |

variables

read_set;

The read and write sets.

Descriplorset] write_set;

timers;

The timers scheduled with us.

343

Chapter 10. Unitoo

public mutable delegate;

The delegate, if we have one.

boolean d_changed;
Iff TRUE one of the descriptor sets was changed, indicating towhemethod that it should
update some of its local variables.

boolean t_changed;
Iff TRUE thetimers was changed.

methods

id (self)
init;

Designated initializer.

void
run;

Run this runloop. This method does not return.
void

addDescriptorForRead descriptor
delegate DescriptorReadDelegate delegate;

Add thedescriptor to this runloop, read events on which are to be handled byedlegate . This
does not protect against adding thescriptor ~ to only a single runloop.

void
addDescriptorForWrite descriptor
delegate DescriptorwrteDelegate] delegate;
Similar toaddDescriptorForRead delegate , add thedescriptor to this runloop, write events

on which are to be handled by thelegate

void
removeReadDescriptor descriptor;

Remove thelescriptor ~ from this runloop. No check is performed on whether tlescriptor
actually is registered for reading with this runloop.

void
removeWriteDescriptor descriptor;

Similar toremoveReadDescriptor , but thedescriptor is removed from the write set.

void
add_timer [Omer] timer;

344

Chapter 10. Unitoo

Add thetimer to the current run loop.

void
remove_timer [Omer] timer;

Remove theimer which is scheduled with this run loop.

class too.RunLoopDelegate |

instance tbo.RunLoopDelegate |

methods

deferred void

runLoopWillSelect loop;
Be notified that th@unlCooplloop will do another select.

class fom.All (RunLoop)

This extension oAl] provides delayegderform ance.

instance tom.All (RunLoop)

methods

void
perform selector sel
after double seconds
with dynamic arguments
pre
seconds >= 0.0;

Perform the selectarel with thearguments afterseconds delay. Even ifseconds is 0, the invo-
cation is not fired immediately; a timer is always set to haveRin& oop] fire the invocation.

File too/Timer

class too.lTimer |

Instances of th@imer] class provide, in conjunction with t&inCoop], event scheduling functional-
ity. objects can fire once or repeatedly.

Because the trigger time offamer] can change, in case of repeated firinffyraer] is not aDate]: a
represents a moment in time likgbate], but is assumed to be constant.

345

Chapter 10. Unitoo

inherits
State super¢ieapElement |
methods

instance (id)
withinterval double secs
invocation [Mvocafion 1 invocation
repeats: boolean repeats p = NO
pre
secs > 0.0 || 'repeats_p && !secs;

Return a newly allocatedimer | instance to firsecs from now, with thgnvocafion inyocation
Iff repeats_p , the timer will repeat everyecs .

instance tba. Mmer |

variables

public double fire_time;

The next (relative) moment in time we will fire.

public double period,;

The repetition period. This is 0.0 for a single-shot timer.

[Ovocation 1 invocation;
The invocation to fire when we do.

methods

id (self)
initWithFireTime double d
invocation [Mvocafion 1 |
period: double p = 0.0
pre
p >= 0.0;

Designated initializer. If the time lies in the past, the timer will fire as soon as possible.

void
fire;

Fire the timer and invoke the invocation. If the timer is repeating, and the invocation did not throw
any conditions, then the timer will be re-added to the curmLoop]. Unfortunately, this will fail
silently.

(s)
writeFields S;

346

Chapter 10. Unitoo

Undocumented.

void
cancel
pre
[self scheduled];

Cancel this timer with the curreRnCoopl. It must be scheduled with thBGnLCoop!.
void

schedule
pre

I[self scheduled];

Schedule this timer with the curreRtinLoop]. The timer must not already be scheduled.

boolean
scheduled;

Return whether this timer is currently scheduled.

int
compare id other;

Return a comparison of the firing times of the two timers.

File too/inet

class oo lhefAddress |

An really is an IPv4 address. It depends on the underlying IPv6 implementation if this
class is usable for IPv6 addresses.

inherits
State superstate],
methods

instance (id)
with (MmetHost], pointer, int) (h, a, I);

Return a new instance with the indicated fields. (&liéress will be deallocated upon the death of
the newly created address.)

instance tba. lhetAddress |

variables

347

Chapter 10. Unitoo

[MefHesST] host;

The host on which this address resides.

pointer address;

The internet address.

int address_length;
The length in bytes of the address.

methods

(pointer, int)
osAddress;

Return the low-level bare address.

void
dealloc;

Undocumented.

boolean
equal id other;

Undocumented.

int
hash;

Undocumented.

metHost—
host;

Return the host of this address. The host is looked up if the address was not yet related to a host.

protected id
init (IMetHost], pointer, int) (h, a, I);

Designated initializer.

OutputStrean]
write S;

Output the address in dotted decimal octet notation.

class toa lhefHQST |

inherits

348

Chapter 10. Unitoo

State supersState |,

variables

static MutableDictionary] hosts_by_name;

All internet hosts currently known, keyed on their name(s).

static hosts_by_addr;

All internet hosts currently known, keyed on their address(es).

static local_host_any;
The wildcard local host.

methods

instance (id)
addressed addr;

Return the host known with the addressir . If the host can be found in the cache, no lookup is
performed.

protected void
cacheHost instance (id) h;

Add the hosth to the cache.

void
initialize;

Undocumented.

void
load arguments;

Undocumented.

instance (id)
named name;

Return the host namedme. If the host can be found in the cache, no lookup is performed.

protected instance (id)
hostWithAddress addr;

Perform a lookup of the host addressetdir . Return the host, amil if it could not be found. The
cache remains unaffected.

protected instance (id)
hostWithName name;

349

Chapter 10. Unitoo

Perform a lookup of the host namedme. Return the host, aril if it could not be found. The cache
remains unaffected.

protected instance (id)
with (Afay], Bfayl) (n, a);

Return a newly allocated host with the namesnd addresses

instance tba lhefHost |

variables

public names;

The names by which this host is known.

public addresses;
The addresses by which this host is known.

methods

id
init (Amayd, Brayd) (n, a);

Designated initializer.

Brmg—]

name;

Undocumented.

class too.lhetPort |

An is an abstract port on an internet host.

inherits
State supergort |,
methods

instance (id)
with int port
at address;

Return a newly createf@etPort__| with theaddress and theport .

instance tba. lhetPart |

variables

350

Chapter 10. Unitoo

public address;

The address (of the host) at which this port resides.

public int port;
The port on the host.

methods

boolean
equal id other;

Undocumented.

int
hash;

Undocumented.

protected id
initWithPort int p
at a;

Designated initializer.

OutputStrearn—]
write DutpuiStream] S;

Output the address in dotted decimal octet notation followed by a colon and the port number.

class toa.ConneciedInefPaort |
A ConnectednefPort__| is a bytestream on a connected TCP socket.

inherits

State supergonnectedPort], [netPort_]

instance tba.CannectedlnetPart |

variables

public server;
Description of the server to which we connected or from which we accepted. In the latter case,
this will be aSenerinefParf]

imetPort—) peer;
The peer socket. Set by invokimgetPort [self peer]

methods

351

Chapter 10. Unitoo

protected id
initWithPort int p
at a,

Designated initializer. Connect to the pprat the address.

id
initWithPort int p
at [MerAddress—1 a
descriptor int d
server
peer jmetPort— pr;

ServernetPor—1 S

Initialization used by ‘ConnectedInetPort [ServerinetPort accept]'.

metPort—
peer;

Return the peer port.

void
registerForRead d;
Undocumented.
void
registerForWrite d;
Undocumented.
class too.ServerlnetPart |

A BerverlnetPort__|is a TCP port which is listening for connections to accept.

inherits

State supergnetPort |, BerverPort |, Descriptor |

instance tba_ServerlnefPorf |

methods

Lonnecreainer=orr |

accept;
Accept a connection on the receiving port, returning a connected port.
protected id

initWithPort int port
at address;

352

Designated initializer. Listen on thmrt at theaddress . If the address
will do; if the portis 0, it is assigned by the operating system.

void
registerForRead d;
Undocumented.

File too/network

class too Address |

instance tbo. Address |

methods

deferred HosT
host;

Return the host on which this address resides.
class toa.Host |
instance tba.Host |

methods

deferred Array]
names;

Return the names for this host.

deferred String_
name;

Return the canonical name of this host.

Chapter 10. Unitoo

is nil , any local address

353

Chapter 10. Unitoo

File too/ports
class too Port]
instance tba.Fort |

methods

deferred void
registerForRead d;

Undocumented.

class too.lConnectedPort]
inherits
State supergZort |, ByfeStream |

instance tbo.ConnectedPart |

methods

deferred void

registerForWrite d;
Undocumented.
class oo . ServerPort |
inherits

State supergZort |

instance tba.ServerPart |

methods

deferred
accept;

Undocumented.

354

Chapter 10. Unitoo

File too/Nameserver

class too.NameserverDefinifions |

The NameserverDefinitions class contains nameserver related constants for any interested class to
inherit.

variables
const DEFAULT_SERVER_PORT = 2360;
The default TCP port on which the nameserver is listening.

const PORT_NOT_FOUND = -1;

The port number returned for the port which is not found.

instance tba.NameserverDefinifions |

class too.Nlameserver |

inherits

State superglameserverDefinifions

instance tba.Nameserver |

methods

deferred void
reportTo client
portOfService service_name
onHost hostname;

Report to theclient the internet TCP port of the service nansegvice_name which is running
on the host namelbstname .

class too.NameserverClienf |

inherits

State superglameserverDefinifions |

instance tba.NameserverClienf |

methods

deferred void
service service_name

355

Chapter 10. Unitoo

onHost hostname
hasPort int port;

Be informed of theport in response to theeportTo portOfService onHost request.

356

Chapter 11. Unit _builtin_

Any

TheAny class...

Any

TheAny instance...

357

l1l. Reference

358

|. Tools man pages

359

tesla

Name

tesla — TOM Compiler

Synopsis

tesla [-u unitname | -ffile][options]

tesla {--version}

Description

teslais the TOM compiler. It translates the TOM source files into C, which may subsequently be
translated by the GNU C compiler, gcc(1), to produce an object file. The input file is usually a unit
file, specified by-u unitname . This unit file describes the files which are to compiledtegla
Alternatively,teslamay compile a single source file, specified-by file

Regular Options

-l dir
Add dir to the include path.

-1
Use the classic, fully dynamic behavior. This will become useful deskcan do whole pro-
gram compilation for greater optiomization.
-F
Write out all files, whether or not they are already present.
-0 file
Only output thefile and the header.
-V

Be verbose.

360

--version

Report the version diug and exit.

Advanced Options

-C name

Add the clasmiameto the classes in thile specified byf .

-C ab

Like -C name, except makeé pose asB3.

-E xy

Add the extensiony of the clasx to thefile specified byf .

--c-extension foo

Use foo ' as the extension of generated source files.

Don'’t depend upon the presence of unit tom.

-Wix
-Wno- x

Warn or do not warn abouk’. Possible warnings arempty-compound .

-f x
-fno- x

Include or exclude the feature. Known features areadable-c

Debugging Options

Print top expressions while they are read.

Print methods after having been resolved.

Emit names of files that are being read.

Tools man pages

361

tig

Tools man pages

Emit names of files that are being resolved.

‘trace-parser tesla.ParseTom

Tell the parser to output full debug information. This is really a debugging option for the parser
and will output a lot of data.

Name

tig — TOM Interface Generator

Synopsis
tig {-u unitname }[-F][-| dir][-V]

tig {--version}

Description

tig is the TOM Interface Generator. It generates the interface definition files for the specified

name. These interface definition files contain descriptions of the classes, methods and object variables
that comprise that unit. A file is created for every original TOM source file in theumiihame ,

with the extension,j .

Regular Options

-l dir
Adddir to the include path.

Output all files, whether or not they are already present.

362

tug

Tools man pages

Be verbose.

--version

Report the version dfg and exit.

Name
tug — TOM Unit Generator

Synopsis
tug {-u unitname }{files ..}[-U unit]

tug {--version}

Description

tug is the TOM Unit Generator. It outputs a unit filepitname .u, detailing whichfiles and
classes make up the unibithame .

Regular Options

-U unit

Make the unitunitname depend upon the uniinit .
Be verbose.

--version

Report the version diig and exit.

363

gp

Tools man pages

Name
gp — TOM Parser Generator

Synopsis
gp [-d] [-v] [-0 tom_source_file] [-0 tom_defines_file 1{file }

gp {--version}

Description

gpis the TOM Parser Generator. It outputs a generated TOM sourcefite source_file .tand
a secondary TOM source filgm_defines_file .t, when given a grammar specificatifie

Regular Options
-0 tom_source_file
Specify the name of hte file to be used for the source of the generated parser.

-0 tom_defines_file

Specify the name of the file to be used when generating the defines used by the generated parser.
Output debugging information while parsing the grammar file..

Be verbose.

-v-flat

Emit flat rules.

-v-cost

Emit non-terminal insertion cost table.

364

Tools man pages

--version

Report the version ajp and exit. This is not yet implemented.

tomc

Name

tomc — TOM compiler (older, being replaced by tesla)

Synopsis

tomc [options][file][output ¢ |output_info]

Description

tomc is the TOM compiler. It translates the file file containing TOM source, and outputs a file output_c
which can subsequently be translated by the GNU C compiler, gcc(1), to produce an object file. The
input file usually has the extension .t. tomc also produces a file output_info, called the info file, which
contains information needed by the TOM resolver, tomr(1). If one or both of the output files is omitted,
the default name is the basename of the input file, with the extension .c or .i, respectively.

tomc is being retired in favor ofesla

365

V. Appendices

366

Appendix A. TOM makefiles

Basics

The TOM makefiless a collection of makefiles that enable easy building and rebuilding of TOM
program units, library units, and dynamically loadable units. When using the TOM makefiles, you do
not need to be concerned with the details of compilation or of the particular system you are using, or
will be using in the future.

The following makefiles constitute the TOM makefiles:

GNUmakefile.app

Build a program into which dynamic loading is possible.

GNUmakefile.bin

Build a program into which dynamic loading is not necessarily possible. It depends on the op-
erating system being used whetl@Umakefile.app andGNUmakefile.bin actualy create
different executables (on NeXTSTEP, for instance, they do not differ).

GNUmakefile.lib

Build a library unit.

GNUmakefile.load

Build a unit which is to be dynamically loaded.

GNUmakefile.top

Build only subprojects.

GNUmakefile.common
The heart of the TOM makefiles. The others are just front-ends to this file.

This is what a minimal, exampleNUmakefile looks like:

UNIT= hello
TOM_SRC= hello

TOM_MAKEFILES_DIR= /usr/lib/tom/makefiles
include $(TOM_MAKEFILES_DIR)/GNUmakefile.bin

To start with the last line, we see tlUmakefile.bin being included. This means ti@NUmake-
file is for a program. Th&NIT is calledhello; this will also be the name of the resulting program.
This simple program contains only one TOM source filgllo.t . Note that the extension is not
specified.

367

Appendix A. TOM makefiles

Important macros

The following macro’s are mandatory except when using@N&makefile.top

UNIT

The name of the unit being built. It depends on the actual makefile being used whether the unit
will be built as a library, application, etc.

TOM_SRC

The names of the TOM source files in this unit, without extension. All TOM source files have ‘t’
as their extension, hence explicitly listing the extension is rather superfluous.

USES_UNITS

The names of the units depended upon byuNer. These units will appear in theses clause
of the unit file. If unspecified)SES_UNITSdefaults taom, i.e., the standard TOM library unit.

LINK_UNITS

The names of the units to be linked with tb&8lIT to produce the final result. Fdin andapp
targets, this must include them unit, and every unit specified in théSES_UNITS For load
targets, this should include everything not already in the application into which loading is per-
formed.

If unspecified, the.lINK_UNITS are set equal to theSES_UNITSfor bin andapptargets, and
set toNONEor load targetsNONHcase is important) means that the result will be linked against
no other units.

Targets
The following standard makefile targets are defined by the TOM makefiles:
all
Build what is to be built. This usually is the default target.

clean

Remove targets and intermediate files.

gendoc

Extract the documentation from the TOM sources.

docclean

Remove the generated documentation.

368

Appendix A. TOM makefiles

More macros

The following macros can be useful -- they are documented and may thus be used:

UNIT_PATH

Specify directories (white-space separated) in which to search for TOM units. These directories
are added to the default directasftom_prefix) . When looking for a unit, for each directory

dir in the path, the directorglir/u is checked for containing the unit The first match will be

used.

For example, if your projedhome/me/src/myapp uses the units tom, too, and the one called
mylib in /home/me/src/mylib , theUNIT_PATHwould be.. , andUSES_UNITSwould include

mylib . Note that the makefiles use the fact that a unit can reside in a subdirectory of the same
name, in a directory somewhere along theIT_PATH. This is especially handy when using a

lot of units, each residing in a subdirectory of a specific top-level directory.

SUBPROJECTS
The names of directories to be visited by make after the project in this directory is built, cleaned,
etc. This macro usually is the only one used in a directory employingkiémakefile.top

C_SRC

The names of any auxiliary C source files, without the extension. For example, the C unit has
a file calledglue.c which contains code that interfaces the TOMth class with the C math
library. Consequently, the GNUmakefile of the C unit specifies:

C_SRC= glue

Actually, the extension of the actual glue file does not matter, since for everymgstconly
the replacemermysrco is used in the makefiles. The makefiles however only contain the rule to
create$(GENDIR)/%.0 for every C source fil&o.c.

GP_SRC

Names of any sources tp. As usual, these names exclude any extensitnh.SRCfiles have
the extensiontp .

EXTRA_OBJ

Any extra object files to be linked with the unit.

Secondary GNUmakefiles

The TOM makefiles employ a file namezNUmakefile.link to list extra objects and libraries
needed by the unit being built. ThR@NUmakefile.link is created by running thTOMMAKE-
FILES_DIR)/genlinkfile shell scriptgenlinkfile tries to locate all unit files in th&LINK_UNITS)

369

Appendix A. TOM makefiles

along the$(UNIT_PATH) , including the correspondinga (libtool archive) files. When a unit is
found but the archive isn't, as is the case with the installed TOM standard units, the name of a library
directory is constructed in such a way that also the TOM standard units can be found in their installed
place.

genlinkfile emits, for each unit found, lines that add to the following macros:

UNIT_OBJS

Directives (-1 and -L) to have the linker link with the unit’s library archive.

UNIT_DEPS
Files that the unit being built depends upon, suitable for use as a makefile dependency.

In addition, each unit can be accompanied yNUmakefile.unit ; for every unit used, that make-
file is included by the&sNUmakefile.link . TheseGNUmakefile.unit files can add command line
arguments to the linking phase of the unit being built:

UF_PRE_LIBS
UF_POST_LIBS

Linker argumentsUF_PRE_LIBS will precede all units’UF_POST_LIBS. This is, for exam-
ple, used by a library that provides an abstraction of X11 and thatAGeBATH_XTRArom

autoconfAC_PATH_EXTRAetsX_PRE_LIBS, X_LIBS, andX_EXTRA_LIBS, and the library’s
GNUmakefile.unit.in will look like this:

UF_PRE_LIBS+= @X_PRE_LIBS@
UF_POST _LIBS+= @X_LIBS@ @X_EXTRA_LIBS@ -IX11

Environment Variables

Parts of the build process are controlled by Makefile macros, which can be usefully overridden by
environment variables.

TESLA_FLAGS
Flags to pass to the compiler, tesla.

TIG_FLAGS

Flags to pass to the TOM interface generator, tig.

TUG_FLAGS

Flags to pass to the TOM unit generator, tug.

370

Appendix A. TOM makefiles

GPFLAGS

Flags to pass to the TOM parser generator, gp.

CFLAGS

Flags to pass to the compiler being used to compile the generated code. Typically, this will be
gcc.

CPPFLAGS

Flags to pass to the compiler being used to compile the generated code. These will be passed
before the command line options controlling includes..

LDFLAGS

Flags to pass to the linker when using eitB&tUmakefile.app or GNUmakefile.bin to build.

MFLAGS

Flags to pass to subsequent invocations of make.

371

Appendix B. GNU General Public License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA Everyone is permitted to copy and distribute verbatim copies of this license docu-
ment, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users. This General Public License applies
to most of the Free Software Foundation’s software and to any other program whose authors commit
to using it. (Some other Free Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for this service if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs; and that you know you can do these
things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

372

Appendix B. GNU General Public License

GNU GENERAL PUBLIC LICENSE TERMS AND
CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

1.0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License. The
"Program", below, refers to any such program or work, and a "work based on the Program" means
either the Program or any derivative work under copyright law: that is to say, a work containing
the Program or a portion of it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in the term "modification".)
Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

2.1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

3. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a.a) You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

b. b) You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge to
all third parties under the terms of this License.

c. ¢) If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or display
an announcement including an appropriate copyright notice and a notice that there is no war-
ranty (or else, saying that you provide a warranty) and that users may redistribute the program
under these conditions, and telling the user how to view a copy of this License. (Exception:
if the Program itself is interactive but does not normally print such an announcement, your
work based on the Program is not required to print an announcement.)

373

Appendix B. GNU General Public License

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do one
of the following:

a.a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

b. b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c.c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control compilation
and installation of the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

.4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is

374

Appendix B. GNU General Public License

void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

.5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your acceptance of this License
to do so, and all its terms and conditions for copying, distributing or modifying the Program or
works based on it.

. 6. Each time you redistribute the Program (or any work based on the Program), the recipient au-
tomatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recip-
ients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by
third parties to this License.

. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent license would not permit royalty-
free redistribution of the Program by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and
a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

375

Appendix B. GNU General Public License

10.9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and "any later version”, you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

11.10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copy-
righted by the Free Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

12.NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU AS-
SUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13.12.IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MOD-
IFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-
SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRO-
GRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New

376

Appendix B. GNU General Public License

Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the
best way to achieve this is to make it free software which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it

and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be

useful, but WITHOUT ANY WARRANTY; without even the implied

warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w'.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than ‘show w’ and
‘show c’; they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

377

Appendix B. GNU General Public License

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary

applications with the library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

378

Glossary

Class Compile Option

A const or a static class variable that is used as a compile-time option. All class compile op-
tions of a single unit are usually collected into a single class. Class compile options are not yet
institutionalized -- they are a convention to-be.

379

